

PECDEMO Photoelectrochemical Demonstrator Device for Solar Hydrogen Generation

Roel van de Krol Helmholtz-Zentrum Berlin, Germany

www.pecdemo.eu roel.vandekrol@helmholtz-berlin.de

Programme Review Days 2016 Brussels, 21-22 November

PROJECT OVERVIEW

Project Information			
Call topic	Validation of photoelectrochemical hydrogen production processes		
Grant agreement number	621252		
Application area (FP7) or Pillar (Horizon 2020)	FP7 Hydrogen production and distribution		
Start date	01/04/2014		
End date	31/03/2017		
Total budget (€)	3,337,682.79		
FCH JU contribution (€)	1,830,644.00		
Other contribution (€, source)	-		
Stage of implementation	86% project months elapsed vs total project duration, at date of November 1, 2016		
Partners	HZB, EPFL, IIT, DLR, UPORTO, EVONIK INDUSTRIES AG, SOLARONIX SA		

PROJECT SUMMARY

Overall objective (MAIP): Research and development on new, fully sustainable hydrogen production pathways

Expected Results PECDEMO:

- To demonstrate a stand-alone solar water splitting device with active area ≥50 cm², solar-to-H₂ efficiency of 8%, stable for more than 1000h
- To demonstrate scalability by combining multiple devices into a larger water splitting module and perform field tests
- To evaluate the potential for large-scale commercialization by extensive techno-economic and life-cycle analyses
- To disseminate PECDEMO's results in the scientific community and to generate interest with industry

Van de Krol, Nat. Comm. (2013)

Project Progress / Actions - Efficiency PEC 5.4 mA/cm² 4.0 mA/cm² Achievement 7.5% 8% 5.9% to-date 8.3 % stage of 25% mA/cm^2 50% 75% implement. **FCH JU Targets** Aspect Unit SoA Parameter (KPI) addressed 2016 2020 Call topic 2016 8.3 Photoelectr. current mA/cm² Efficiency 7.5 8-10% >5% Solar-to-H₂ %

Future steps:

- Combine best Cu₂O electrodes and catalysts into device → should give 12.3% STH efficiency
- Decrease bandgap of BiVO₄ by N-doping and tune band positions with dipole molecules
- Improve photon management with distributed Bragg reflectors (DBR)

Project Progress / Actions - Stability

>	Achievement to few hours (Fe ₂ O ₃)					Demonstration 1000h		
	% stage of implement.			25% 50%		75%	D1.4: <10%↓ in 100	
	Aspect Parameter (KPI)			SoA	FCH JU Targets			
	Aspect	Paramete	er (KPI)	Unit	SoA	FCH	JU Target	ts
	Aspect addressed	Paramete	er (KPI)	Unit	SoA 2016	FCH Call topic	JU Target 2016	ts 2020

- Stability of Cu₂O was <5 min. at project start, currently <10% performance decrease in 55h
- BiVO₄: <10% decrease in 100h at pH 8.6 (D1.4) 50% decrease in 65h at pH 13

Future steps:

Improve stability of Cu₂O and BiVO₄ by optimization of protection layers

Project Progress / Actions - Stability

PEC

DEMO

Project Progress / Actions - Scale-Up

Achievement to-date % stage of implement.	<1 c	2 2 2	25 %	50%	75%	50 cm	ו ²
Aspect addressed	Paramo	eter (KPI)	Unit	SoA 2016	FCH Call topic	JU Target 2016	ts 2020
Scale-Up	Electr	ode size	cm ²	50	50	-	-

Future steps:

- Further reduce ohmic losses for largearea conducting substrates
- Improve homogeneity and quality of BiVO₄ and Cu₂O photoelectrodes
- Integrate photoelectrodes and photovoltaic bottom-absorbers in large-area device array (1x4)

50 cm² Cu₂O photocathode

Outdoor test

PEC

Project Progress / Actions - Scale-Up

Project Progress - Miscellaneous

Work package on Techno-Economic and Life Cycle Analyses

- Three concepts developed for H₂ production scenarios in different locations
- Component sizing and flow sheeting completed
- Global warming potential was calculated for various scenarios

Status Deliverables and Milestones

- Deliverable 1.2 not entirely met: device efficiency of 7.5% instead of 8%
- All other deliverables and milestones have been successfully completed

SYNERGIES WITH OTHER PROJECTS AN PROGRAMMES

Interactions with projects funded under EU programmes				
NanoPEC (2009-2011)	The three best-performing materials from the NanoPEC project were selected for the optimization, device design, and scale-up efforts in PECDEMO. Several partners were/are in both projects.			
BI-DSC	Experience from BI-DSC activities helped to achieve a demonstration of 1000h stability for Fe ₂ O ₃ photoanodes.			
Interactions with national and international-level projects and initiatives				
MeOx-4-H2	Fundamental studies on W-doped BiVO ₄ in MeOx-4-H2 revealed charge trapping mechanism that inspired a new doping strategy for PECDEMO's BiVO ₄ photoanodes.			
HNSEI	Fundamental efforts on semiconductor/catalyst interactions in HNSEI revealed why CoPi is such a great catalyst for BiVO ₄ ; this avoided wasted efforts on noble metal catalysts in PECDEMO.			
PECHouse	Close collaboration between PECHouse and PECDEMO researchers have resulted in record efficiencies for Cu ₂ O photocathodes.			

DISSEMINATION ACTIVITIES

Public deliverables

- D1.4 Stable device with <10% performance decrease after 100 h operation
- D3.3 Public report on large-area PEC/PV components
- D4.3 Public report on device design
- D7.1 Mid-term assessment report
- D8.1 Basic framework of website database is online and operational

Publications: 19

Conferences/Workshops

- 2 organised by the project: IPS-20 Intl. Conf. (2014) & MRS Symposium (2016)
- 34 in which the project has participated (but not organised)

Social media

Patents: 0

- J. Luo, J-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N-G. Park, S.D. Tilley, H.J. Fan, M. Grätzel, "Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts", Science, 345 (6204), 1593 (2014)
- S. Kirner, P. Bogdanoff, B. Stannowski, R. van de Krol, B. Rech, R. Schlatmann, "Architectures for Scalable Integrated Photo Driven Catalytic Devices - A Concept Study", Int. J. Hydrogen Energy 41, 20823 (2016)

Thank You!

Coordinator: roel.vandekrol@helmholtz-berlin.de