

## HyCoRA Hydrogen Contaminant Risk Assessment

Jaana Viitakangas

<u>http://hycora.eu/</u> jaana.viitakangas@vtt.fi

Programme Review Days 2016 Brussels, 21-22 November

## **PROJECT OVERVIEW**

| Project Information                                |                                                                                   |  |  |  |
|----------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
| Call topic                                         | SP1-JTI-FCH.2013.1.5                                                              |  |  |  |
| Grant agreement number                             | 621223                                                                            |  |  |  |
| Application area (FP7) or<br>Pillar (Horizon 2020) | Transport and refuelling infrastructure (FP7)                                     |  |  |  |
| Start date                                         | 01/04/2014                                                                        |  |  |  |
| End date                                           | 31/03/2017 + 3 months extension expected                                          |  |  |  |
| Total budget (€)                                   | 3 906 912                                                                         |  |  |  |
| FCH JU contribution (€)                            | 2 159 024                                                                         |  |  |  |
| Other contribution (€, source)                     | 137 000 (from Research Council of Norway)                                         |  |  |  |
| Stage of implementation                            | 86% project months elapsed vs total project duration, at date of November 1, 2016 |  |  |  |
| Partners                                           | VTT, CEA, JRC, Protea Ltd, SINTEF, Powercell<br>Sweden AB                         |  |  |  |





The overall objective is to <u>reduce cost</u> of hydrogen fuel quality assurance (QA) for hydrogen refuelling stations (HRSs).

It will also provide recommendations for revision of existing ISO 14687-2:2012 standard for hydrogen fuel in automotive applications.



Gas analysis sampling frequency

## PROJECT PROGRESS - HCHO results =HyCoRA



| Aspect                | Parameter (KDI)                  | Unit | SoA                  | FCH JU Targets                                     |      |                                                        |  |                         |  |
|-----------------------|----------------------------------|------|----------------------|----------------------------------------------------|------|--------------------------------------------------------|--|-------------------------|--|
| addressed             |                                  |      | 2016                 | Call topic                                         | 2017 | 2020                                                   |  |                         |  |
| Impurity<br>limits of | HCHO data for standard revision  | _    | Insufficient<br>data | Recommenda<br>tions for<br>revision of<br>existing |      | Revision of<br>max allowable<br>impurity<br>levels and |  |                         |  |
| fuel for<br>PEMFCs    | HCOOH data for standard revision |      | -                    | -                                                  | -    | -                                                      |  | (draft) ISO<br>standard |  |

#### **Future steps:**

Publication of HCHO measurement data, continued study of the decomposition products of HCHO, measurements of HCOOH in H2

# PROJECT PROGRESS - HCHO results =HyCoRA





Two runs (4 and 3 hours) @ 0.6 Acm<sup>-2</sup>, with <u>fuel utilisation of 99.5-99.6%</u> (contaminant enrichment factor of 200-250)

A very small (~ 10 mV) average voltage drop in 4 hours due to HCHO

 In CO reference poisonings 1.86 ppm led to 50 mV average voltage drop in 67-71 min

 $\rightarrow$  The effect of HCHO is noticed to be smaller than the effect of CO

Current limit for HCHO (ISO 14687-2:2012) is 0.01 ppm

## PROJECT PROGRESS - HRS sampling =HyCoRA



| Aspect                               | Daramator (KDI) | Unit | Unit |                                                                                              | SoA  |      | FCH JU Targets |  |  |
|--------------------------------------|-----------------|------|------|----------------------------------------------------------------------------------------------|------|------|----------------|--|--|
| addressed                            | Parameter (KPI) |      | 2016 | Call topic                                                                                   | 2017 | 2020 |                |  |  |
| Fuel quality<br>variation at<br>HRSs | Technical data  | -    |      | Technical data for<br>(fuel compositions<br>and) impurity<br>concentrations at<br>HRS nozzle |      |      |                |  |  |

#### **Future steps:**

The third measurement campaign will be performed early spring 2017. The evaluation of analytical methods will be completed. The development of new analytical methods will be completed. New pre-concentration devices will be evaluated.

## PROJECT PROGRESS - HRS sampling =HyCoRA







Particulate sampler HYDAC PSA-70 2<sup>nd</sup> campaign: newly commissioned HRS

1<sup>st</sup> campaign: impact of feedstock on fuel quality

Hydrogen fuel quality generally good

- Impurities does not correlate with H<sub>2</sub> feedstock
- No correlation between commissioning date and fuel quality found

## PROJECT PROGRESS - Risk model

#### Achievement to-date % stage of implement. CO-only risk model has been completed model implemented

**HyCoRA** 

| Aspect Decemptor (KDI)             | llait                                  | SoA  | FCH JU Targets |                                              |      |      |
|------------------------------------|----------------------------------------|------|----------------|----------------------------------------------|------|------|
| addressed                          | Parameter (NPI)                        | Unit | 2016           | Call topic                                   | 2017 | 2020 |
| Quantitative<br>risk<br>assessment | Implementation<br>of the<br>risk model | -    |                | Determination<br>the need for gas<br>quality |      |      |

#### **Future steps:**

Quantitative risk model will include irreversible contaminants, especially sulphur The parameters in the quantitative model will be improved Publication of risk model

## **PROJECT PROGRESS - Risk model**



**HyCoRA** 

## SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES



| I          | nteractions with projects funded under EU programmes                                                                                                                                                                                                                                                                                                               |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stack-Test | Stack-testing methodologies were developed. From HyCoRA, input was given concerning dead-end and recirculation measurements.                                                                                                                                                                                                                                       |
| HyQ        | WP1, WP2 in HyCoRA project are partially based on the developments in pervious HyQ project.                                                                                                                                                                                                                                                                        |
| PEMBeyond  | Sharing part of PEMFC stack characterization data between projects.<br>Powercell Sweden Ab is a partner in both projects, and same type of<br>PEMFC stacks, but with different membrane-electrode assemblies<br>(MEA), are used. Part of the characterization data (e.g. pressure losses)<br>are applicable in both projects.                                      |
| Interacti  | ons with national and international-level projects and initiatives                                                                                                                                                                                                                                                                                                 |
| ISO WG     | ( <i>Latests/coming next</i> :)TC197 ISO meetings in Munich; results from<br>HyCoRA WP1 was presented by SINTEF as input to the discussion on<br>tolerance limits for HCHO and HCOOH in the revision of the ISO 14687<br>standard. JRC will organize the ISO TC197. For the upcoming meeting of<br>WG27, SINTEF has been asked to provide information from HyCoRA. |
| LANL       | Collaboration efforts with VTT and JRC on the impacts of contaminants<br>on H2 fuel quality were regarded valuable                                                                                                                                                                                                                                                 |

## **DISSEMINATION ACTIVITIES**

### **HyCoRA**

#### **Public deliverables**

- D1.1 Review on the impact of impurities on PEMFC and analytical methods for hydrogen QA
- D1.2 Report on reference measurements and test protocols
- D2.3 Intermediate report on the performance of existing and new hydrogen purity analysis methods
- D3.1 Hydrogen sampling unit tested and certified
- D3.2 Measurement of hydrogen quality variation at various HRS with different fuel feedstock

#### **Conferences/Workshops**

- 1 conference, Materials Challenges for Fuel Cells and Hydrogen Technologies 2016 (HyCoRA one of the organizers), and 2 OEM workshops organised
- 6 conferences/workshops participated (in which HyCoRA project results were presented); FCH Nordic 2016, 4<sup>th</sup> IW HI&T, 3<sup>th</sup> IW HI&T, EFCF 2015, EFCD 2015 workshop, IW PEMFC stack and stack component testing
- In addition; active liaison with the standards drafting organizations (ISO TC 197)

#### Social media

**Publications:** 0 to date (multiple drafts)

Patents: 0

## Thank You!

Jaana.Viitakangas@vtt.fi