

PECSYS Technology demonstration of large scale photo-electrochemical system for solar hydrogen production

Programme Review Days 2019 Brussels, 19-20 November 2019

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Sonya Calnan

Helmholtz Zentrum Berlin

www.pecsys-horizon2020.eu

sonya.calnan@helmholtz-berlin.de

PROJECT OVERIVEW

- **Call year: 2016**
- from sunlight
- **Project dates: 01/01/2017 31/12/2020**
- % stage of implementation 01/11/2019: 75 %
- Total project budget: 2.5 M €
- FCH JU max. contribution: 2.5 M €
- Other financial contribution: 0 €
- (IT), Forschungszentrum Jülich (DE), Solibro Research AB (SE), Enel Green Power (IT)]

UPPSALA

UNIVERSITET

Call topic: H2020-JTI-FCH-2016-1, FCH-02-3-2016: Development of processes for direct production of hydrogen

Partners: [Helmholtz Zentrum Berlin (DE), Uppsala Universitet (SE), Consiglo Nazionale delle Ricerche, Catania

PROJECT SUMMARY & OBJECTIVES

PECSYS - Technology demonstration of large-scale photo-electrochemical system for solar hydrogen production

Application and market area

Decentralised solar energy supply for single residential or small commercial building

*https://nieuws.kuleuven.be hydrogen-gas

	Context	Target	PECSYS Status	SoA	SoA So YEA
es (cm²)	Project's own	> 100	\bigotimes	64	FZ Jülich
strator	Call	≥ 10		1.6	KU Leu Belgium,
on,	Call	5		None yet	
cy,	Call	> 6		15	KU Leu Belgium
	Call (Project)	> 1.5 (≥ 1.6)		2.03	KU Leu Belgium
nths	Call	≤ 10		None yet	

*https://nieuws.kuleuven.be/en/content/2019/belgian-scientists-crack-the-code-for-affordable-eco-friendly-

PROJECT PROGRESS/ACTIONS – Solar to hydrogen conversion efficiency

Silicon 294 cm², 1.5 g/h/m², 6.5 % **CIGS 0.9 cm²** ?? g/h/m² 12.6 %

- Fully integrated photovoltaic electrolyser
- Alkaline electrolyte 1.0 M KOH
- Earth abundant catalysts

100 cm² CIGS

294 cm² Silicon

Hydrogen production rate and STH efficiency reduce as solar collection area increases

PROJECT PROGRESS/ACTIONS – Solar to hydrogen conversion efficiency

Silicon 294 cm², 1.5 g/h/m², 6.5 % CIGS 0.9 cm² ?? g/h/m² 12.6 %

Solar to hydrogen efficiency η_{STH}

- Value depends on temperature (*T*) and irradiance (*G*)
- Non-existent internationally recognised standard test procedures
- Samples larger than 100 cm² can only be tested outdoors

PROJECT PROGRESS/ACTIONS – Levelised cost of H₂ production

Cost calculation scaled for 16 g/h production located in Juelich, Germany

294 cm² silicon (SHJ) prototype • Producing 44 mg- H_2/h NiFeO | NiMo catalysts on nickel foam

Cost drivers

- Energy conversion efficiency
- Price of electrolyser casement material
 - Nickel frame for CIGS \bigcirc approach
 - 3-D printed polymer for silicon heterojunction (SHJ) approach

PROJECT PROGRESS/ACTIONS – Preparation for demonstrator

21 December

21 June

Sunrise Sundown Sunrise Sundown Shadowing by experiment No shadowing by hall from ca.16:00 experiment hall

Progress of test field preparation

- PV modules connected to an PEM electrolyser used as a reference
- Pending installation of integrated photovoltaic electrolysers
- First monitoring tests using reference completed

Challenge

Scale- up losses in performance have delayed construction of integrated modules for demonstrator

PROJECT PROGRESS/ACTIONS – Preparation for demonstrator

936 cm²

No start value

Mar 2019: 294 cm²

- Scale-up leads to reduction in hydrogen production rate and STH efficiency
- Electrolyser part being re-designed to reduce resistance losses

Oct 2019: 936 cm²

Feb 2020: > 1 m^2

✓ Target at end of Project ✓ Demonstrator array of ~ 1 m² modules \checkmark Total area = 10m²

Risks and Challenges

Risks

- Efficiency loss in both PV and EC part because of upscaling. 3-D computations introduced to aid design devices with low resistance losses.
- Unfavourable business environment conditions in the PV industry. Two industrial partners provide parallel route toward implementation of integrated demonstrator.

Challenges

- Lack of availability of low cost, lightweight materials that are resistant to alkaline electrolyte at temperatures above room temperature.
- Assembly of electrolyser part and integration of photovoltaics module to it, is not mechanized making construction of larger units difficult.

Communication and Dissemination Activities

- Demonstrations to general public: 4
- Conferences and workshops attended: 23
- **Project Brochure: 1**
- Guest editors of Special issue of "Energies" journal on Materials and Devices for Solar to Hydrogen Energy Conversion (CNR)
- Peer reviewed publications: 8

Prospects for Hermetic Sealing of Scaled-Up Photoelectrochemical Hydrogen Generators for Reliable and Risk Free Operation

Sonya Calnan^{1,*}, Stefan Aschbrenner¹, Fuxi Bao¹, Erno Kemppainen¹, Iris Dorbandt¹ and Rutger Schlatmann ^{1,2}

¹ PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstrasse 3, 12489 Berlin, Germany; stefan.aschbrenner@helmholtz-berlin.de (S.A.); fuxi.bao@helmholtz-berlin.de (F.B.);

for Thermally Integrated Solar-Driven Water **Splitting Applications**

İlknur Bayrak Pehlivan¹, Marika Edoff², Lars Stolt³ and Tomas Edvinsson^{1,*}

- ¹ Department of Engineering Sciences, Solid State Physics, Uppsala University, Box 534, SE-75121 Uppsala, Sweden; ilknur.bayrak_pehlivan@angstrom.uu.se
- SE-75121 Uppsala, Sweden; Marika.Edoff@angstrom.uu.se

- Project organized workshop and video: due in Spring 2020
- Patents (and applications): **none as yet**
- Public deliverables of the project
 - D7.2 Field and balance of plant ready for use online

www.pecsys-horizon2020.eu

EXPLOITATION PLAN/EXPECTED IMPACT

Exploitation

- Development of new catalyst materials and devices designs for solar hydrogen generation (CNR, HZB, UU)
- Provision of testing and performance measurement services for industry: (FZJ, HZB)
- Development of new materials for PV cells and catalysts for solar hydrogen generation: (UU, HZB)
- Patenting and licensing any intellectual property gained: (all partners)
- Process development for PV modules for solar hydrogen generation (EPG, HZB)
- Consortium started using EU Support Service for Exploitation of Research Results in November 2019

Impact

- Technical and economic feasibility of integrated PV-EC solar-hydrogen generation: value addition to photovoltaic module production
- Lessons learned and results: foundation for further research and possible commercialization of the next generation devices for solar fuel production such as the artificial leaf

SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES

4FI MHOI T7

ĤEMF

- **Regional Development Fund.**

Interactions with national and international-level projects and initiatives

ENERGY SYSTEM 2050

capabilities developed for photovoltaic driven electrolysers at HZB

• ARCIGS-M: Advanced aRchitectures for ultra-thin high-efficiency CIGS solar cells with high

•HPEM2GAS: Attendance of workshop in EMDEN (DE) on 12th February 2019 in order to establish interaction with other H2020 Projects in the same field of PECSYS project

• "CIGS-WO3 solar water splitting systems" (UU-SRAB). A pre-study funding from European

• Energiesystem 2050: A joint initiative of the research field energy of the Helmholtz Association aimed at improving the understanding of energy systems and at developing technological solutions for deployment. FZJ and HZB benefit from studies on deployment of renewable energies and hydrogen in the energy supply system of Germany

• The Helmholtz Energy Materials Foundry (HEMF): Indoor and outdoor measurement

Acknowledgements

Thank you for your attention

The project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 735218. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme and Hydrogen Europe and N.ERGHY. The project started on the 1st of January 2017 with a duration of 48 months.

PECSYS Technology demonstration of large scale photoelectrochemical system for solar hydrogen production

PECSYS

Programme Review Days 2019 Brussels, 19-20 November 2019

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Sonya Calnan

Helmholtz Zentrum Berlin

www.pecsys-horizon2020.eu

Coordinator: sonya.calnan@helmholtz-berlin.de

