

Efficient Use of Resources in Energy Convertig Applications

Grant Agreement N°303024

Dr. Alexander Dyck

www.project-eureca.com

PROJECT OVERVIEW

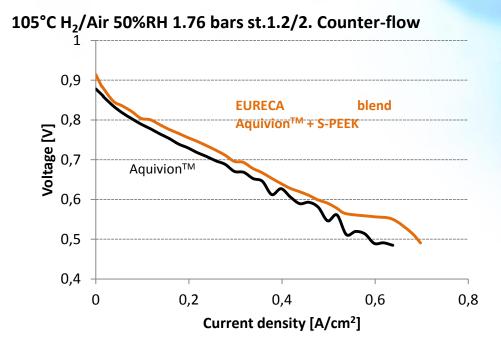
- Call topic: SP1-JTI-FCH.2011.3.1
- Application Area:
 Next generation stack and cell design
- 1st July 2012 31st August 2015
- Total Budget: 6.314.505 €

Vision: Development of MT-PEMFC based CHP technology

with high efficiency and long lifetime

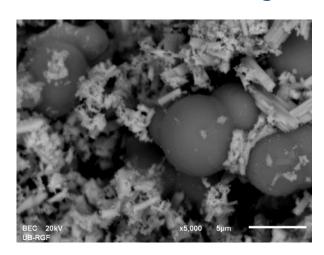
• Stage of implementation: 80%

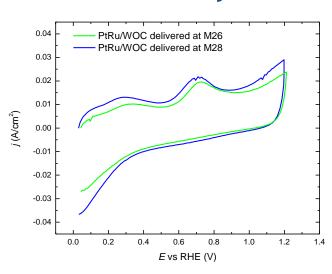
Programme objective/targ et	Project objective/ target	Project achievements to-date	Expected final achievement		
MAIP					
4-5,000 €/kW	< 3,000 €/kW	< 5,000 €/kW	75%		


Programme objective/target	Project objective/target	Project achievements to-date	Expected final achievement	
AIP				
35% based on integrated reformer solution)	30% electrical efficiency	35% electrical efficiency has been calculated	80%	
>10,000 hours (stack) >20,000 hours (system)	Prototype material 4000 h Serial material >2000 h	Prototype material 1583 h Serial material 3326h	39% 100%	
< 3000 €/kW _{el} (hydrogen fuel cell system)	< 3000 €/kW _{el}	Cost Assessment is not yet finalised	80%	

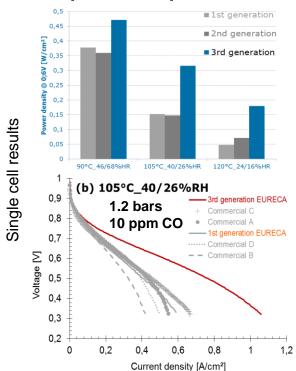
Membrane

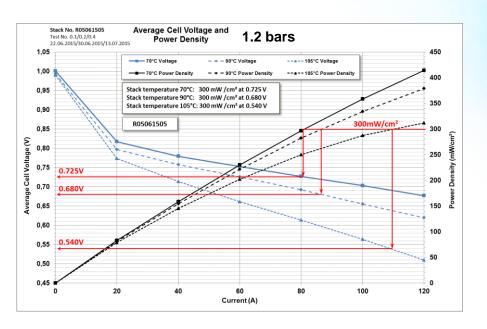
 Two types of membrane material have been developed and integrated into fuel cells for testing




Blended membrane
Patent pending: 14 50328

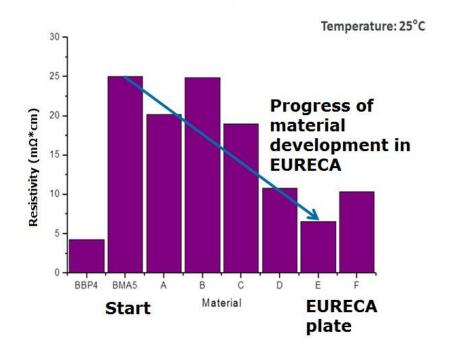
Catalyst


- Synthesis Route of Tungsten Carbide (WOC)as catalyst support has been improved as well as PtRu on WOC
- Catalyst shows higher mass activity towards HOR and improved CO tolerance than commercial, due to interaction between WOC support and PtRu particles
- Production and integration in MEA for final system



MEA

- Development of 3 generations of MEAs with progressive improvement
 - 1st: Commercial components → Small batch for stack development
 - 2nd: New catalyst from UB \rightarrow Production ~100 pieces for final system
 - 3rd: Advanced → Small batch tested in 5 cells stack
- Improved performance vs all commercially available MEA



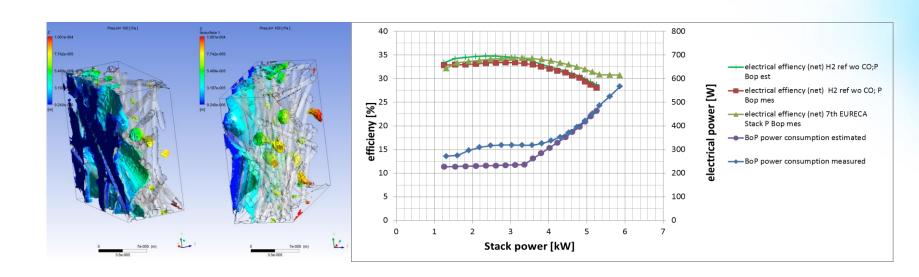
5 Cells Stack Results - 3rd generation MEA

Bipolar Plate

- Manufacturing process and quality control have been improved
- Resistivity of BPP has been decreased to $<10m\Omega/cm$

Balance of Plant (BoP)

- Short stacks with different configuration have been set up and tested
- Full stack for system integration



 Completion and testing of new system in a test bench

Modelling

- On Cell and System Level has been performed for
 - Two-phase flow in a reconstructed GDL
 - Gas pressure and velocity in BPP
 - System Efficiency

RISKS AND MITIGATION

- > 30 % electrical efficiency:
 - The calculated electrical efficiency using the obtained data from the material and stack testing is ~35%

Remedial action:

To further improve the electrical efficiency
 BoP components have to be improved as well

SYNERGIES WITH OTHER PROJECTS AND INITIATIVES

- Interactions with EU-level projects (past & present)
 - CISTEM
 - PREMIUM ACT
 - Second Act
 - StackTEST
 - FCTESQA
 - FCTESNET
 - MATISSE

HORIZONTAL ACTIVITIES

- Number of PhD thesis: 1
- Workshop has been held in Freiburg on 2nd/3rd December 2014

Title:

Medium Temperature PEM FC - materials, stacks and systems

- General public awareness:
 - www.project-eureca.com
 - Project and Workshop Flyer
 - Fair support of FCH-JU booth by exhibit (HMI 2014/15)

DISSEMINATION ACTIVITIES

Paper & Proceedings: 5 (+3 in preparation)

Poster: 6

Patents: 1

Presentations: 19 (including Workshop)

• Fair-Attendance: e.g. Hannover Fair

EXPLOITATION PLAN/EXPECTED IMPACT

- Main result beyond international SoA:
 - MT-PEM FC prototype system with improved membrane, catalyst, BPP and BoP
- Achievements that allows progressing one step further to cost reductions:
 - Serial production of membrane, catalyst, BPP
- Main achievements with respect to TRL increase:
 - First MT-PEM FC system on prototype level (TRL 4) ready for demonstration (TRL 6)

Thank you very much for your attention!

FCH-JU funding is widely appreciated. (Grant agreement N°303024)