

Hydrogen For Innovative Vehicles

FCHJU Grant: 621219

Simona Webb Project Coordinator Greater London Authority www.hyfive.eu

PROJECT OVERVIEW

- Hydrogen for Innovative Vehicles
- Topic 1.1 Large-scale demonstration of road vehicles and refuelling infrastructure VI
- April 2014 September 2017
- Budget: € 38,418,137 with FCH JU contribution: € 17,970,566
- Deploy 110 vehicles and 6 refuelling stations in 3 European regions
- Tackle all of the final technical and social issues which could prevent the commercial roll-out of hydrogen vehicles and refuelling infrastructure across Europe.

Status before project	MAIP target	Project Target	Current status/ achievements	Expected final achievement
Light Duty Vehicles (mainly cars) at 3 additional sites with 3 new stations	~ 500	Ambition to deploy 110 new FC passenger cars and six new HRS in three clusters across Europe	69 vehicle orders Stations: 2 operational,2 ready end of 2015, 2 in 2016	100%
Appropriate H2 supply chain to match Transport, Stationary and Early Markets requirements.	10 - 20% of general H2 demand should be produced via carbon free processes	>50% of hydrogen to be sourced from renewables	On-site hydrogen production via water electrolysis using renewable electricity	100%

Status before project	AIP target	Project Target	Current status/ achievements	Expected final achievement
Vehicle Operation lifetime	>2,000 hrs	min. 3,000 hrs as project target	Up to March 2015 300 hours	80%
Minimum vehicle operation	12 months or 10,000 km	12 months or 10,000 km	Vehicles in operation for more than 4 months	100%
Vehicle availability	95 %	95 %	first 6 month of the project: 99,8%	100%
Hydrogen purity and refuelling process	SAE J2601 and 2719 and ISO. SAE TIR J 2799	SAE J2601 & J2719 SAE TIR J2799	average refuelling time of 2 min 48 sec.	100%

Status before project	AIP target	Project Target	Current status/ achievements	Expected final achievement
Availability of refuelling	98% measured as usable operation time	98% measured as usable operation time of the whole station	average for first 6 month 95,4%	100%
HRS refuelling capacity	min. 50kg/day at start of project,	All HRS will have a capacity of >80kg/day initially and the network in each cluster will exceed the 200kg/day target	Target on track new stations in CHN 100kg/day	100%

 HyFIVE is leading to considerable improvement in the state of the art for fuel cell passenger cars deployed in Europe. These vehicles are the closest to market vehicles deployed to date in Europe in terms of technical readiness and cost.

The Consortium Focus for next year is on:

- Organising more dissemination events and test drives across the three clusters to promote the project and activities.
- Organising cluster events around the opening of the refuelling stations.
- Working on the customer experience (expectations and reality; refuelling experience; maintenance of the vehicles)
- Gathering data for both vehicles and stations and compiling public reports.

RISKS AND MITIGATION

- Risk:
 - Delays in design and construction; HRS siting permitting issues

• Mitigation:

- The London refuelling stations are highly modular in nature and make use of standardised equipment.
- Delays lead to more suitable locations and valuable learning.
- With delays in opening of the stations the vehicles are relying on the existing network of stations and/or temporary back-up solutions to ensure the smooth operation of the HyFIVE vehicles and a maximum refuelling availability across the local networks.

RISKS AND MITIGATION

- Risk:
 - Inability to place vehicles with end users
- Mitigation:
 - The end-user identification is facilitated by the way the HyFIVE budget is structured, which allows the OEMs to offer lower cost vehicles to the end users than under previous projects.
 - The OEMs are collaborating with their local dealers and distributors to help in end user selection. These deployments will be supported by the cluster coordinators.

SYNERGIES WITH OTHER PROJECTS AND INITIATIVES

Copenhagen:

The Malmo station is made available to the HyFIVE vehicles providing a refuelling connection between Denmark and Sweden. This will further facilitate FCEV travel along the hydrogen corridor being established as a part of the Scandinavian H2 Highway partnership.

• London:

The three new HRS delivered through HyFIVE will expand the existing refuelling infrastructure to create an integrated and strategic network for hydrogen transport users in the city. HyFIVE will make use of stations deployed through CHIC, HYTEC, LHNE.

Southern Cluster:

Bolzano is one of the five cities partnering in the FCH JU-funded CHIC project by deploying five FC buses and one hydrogen refuelling station. This station, operated by IIT and capable of both 350 bar and 700 bar refuelling, will be made available to HyFIVE vehicles.

HORIZONTAL ACTIVITIES

Refuelling infrastructure:

Partners are collaborating in the development of training materials for three groups:

- First responders require information on how to deal with incidents at the HRS.
- Vehicle users require easy to use information on the fuelling procedures and specific health and safety issues around the use of unmanned HRS.
- Technicians involved in installing and maintaining the HRS.

• Vehicles:

In each of the clusters where the OEMs deploy vehicles, they will establish / adapt after-sales support infrastructure. This infrastructure will not only support the vehicles deployed in this project, but will also act as the start of the full commercial supporting service which is required for the full commercial roll-out stage.

DISSEMINATION ACTIVITIES

www.hyfive.eu

- On average members of the consortium are attending 3 large events per month and have presented the project, transmitting key messages set out in the project's Communication Plan.
- Over 40 publications in regional newspapers and over 80 online articles.

EXPLOITATION PLAN/EXPECTED IMPACT

- HyFIVE is a key aspect of the FCH JU's efforts to commercialise hydrogen technology across the transport and hydrogen production sectors.
- The HyFIVE vehicles represent a major step towards the affordable fuel cell vehicle which the sector requires and the large fleet of vehicles allows HRS operators to make investments to test a network of HRS.
- Each of HyFIVE's partners has joined the project consortium and will be investing considerable resources in the project's activities in order to exploit the project's learning for their hydrogen transport activities and ultimately to secure a stake in the emerging hydrogen and FCEV market.

