

VOLUMETRIQ

VOLUme Manufacturing of PEMFC Stacks for TRansportation and In-Line Quality Assurance

Deborah Jones

CNRS

www.volumetriq.eu

Deborah.Jones@umontpellier.fr

Programme Review Days 2018

Brussels, 14-15 November 2018

PROJECT OVERVIEW

Call year: 2014

Call topic: FCH-01.2-2014
 Cell and stack components, stack and system manufacturing technologies and quality assurance

Project dates: 01/09/2015 – 28/02/2019

* stage of implementation 01/11/2018: 90%

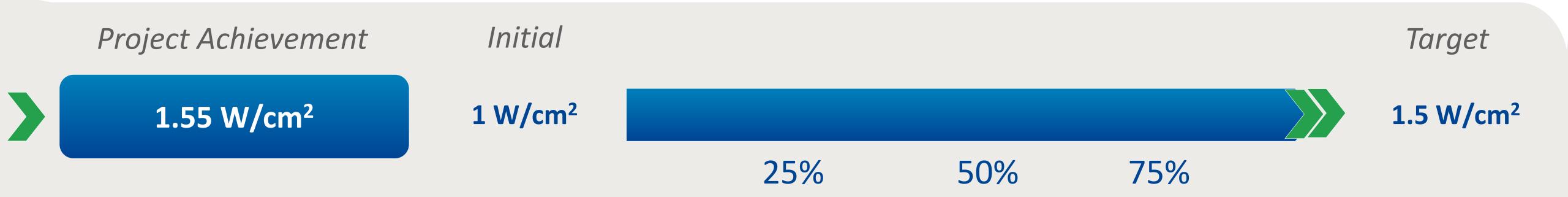
Total project budget: 5,163,450 €

• FCH JU max. contribution: 4,961,950 €

Other financial contribution: 201,500 € (BMW 20% own-funding, Daimler self-funded)

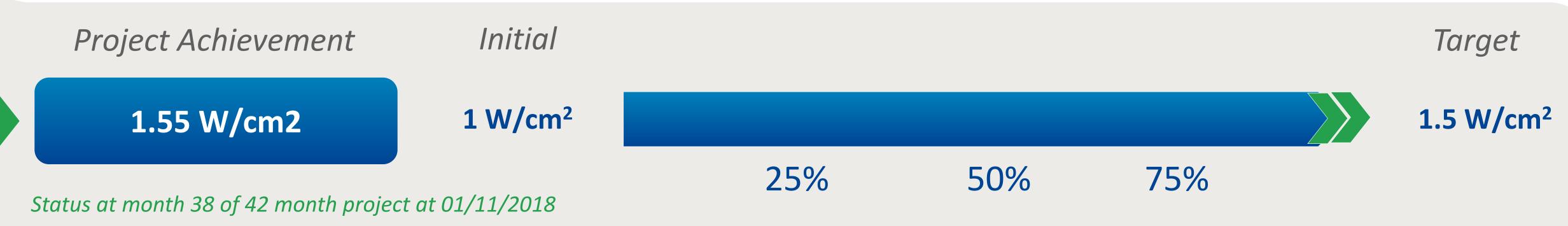
Partners: CNRS (coordinator), JMFC, BMW, Solvay Speciality Polymers, ElringKlinger, Pretexo

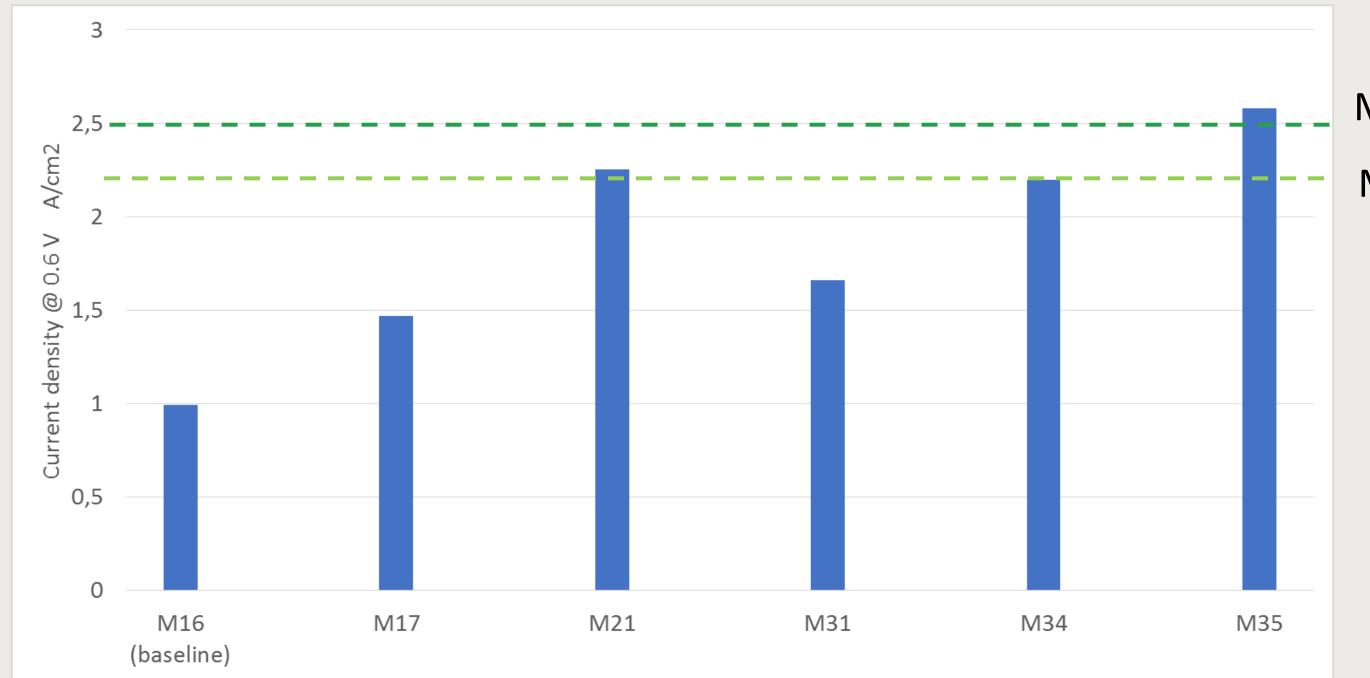
VOLUMETRIQ PROJECT SUMMARY


VOLUme Manufacturing of PEMFC Stacks for TRansportation and In-Line Quality Assurance

- VOLUMETRIQ aims to provide a European supply chain for membrane, catalyst coated membrane, bipolar plates, optimised stack design
- Volume manufacturing capability for components, with embedded quality control in component manufacture and assembly to enable validation of performance, lifetime and manufacturability
- Analysis of each process capability and efficiency, including costs
- Global positioning vs international state-of the art:
 - Stack power density
 - 4.1 kW/L at 2.0 A/cm² 5.0 kW/L at 2.5 A/cm² (excluding housing)
 - autoStack-CORE 3.5 kW/L (excluding housing)
 - Mirai 3.1 kW/L (integrated into vehicle)
- Transport application automotive

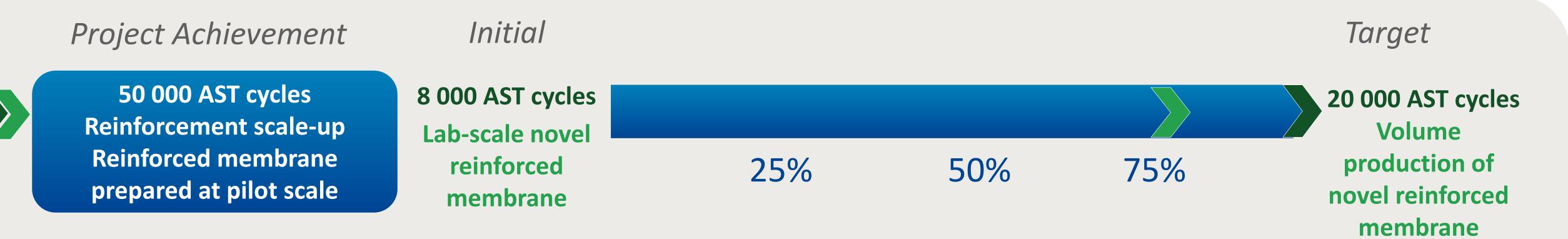
PROJECT PROGRESS/ACTIONS – Single cell power density




- VOLUMETRIQ single cell power density target 1.5 W/cm² at 0.6 V
- SoA 2017* 1.0 W/cm²
- MAWP single cell power density target for 2020 1.5 W/cm²
- VOLUMETRIQ achieved 1.55 W/cm² at 0.6 V at M35

PROJECT PROGRESS/ACTIONS – Single cell power density

MS3, 2.5 A/cm² at 0.6 V


MS2, 2.2 A/cm² at 0.6 V

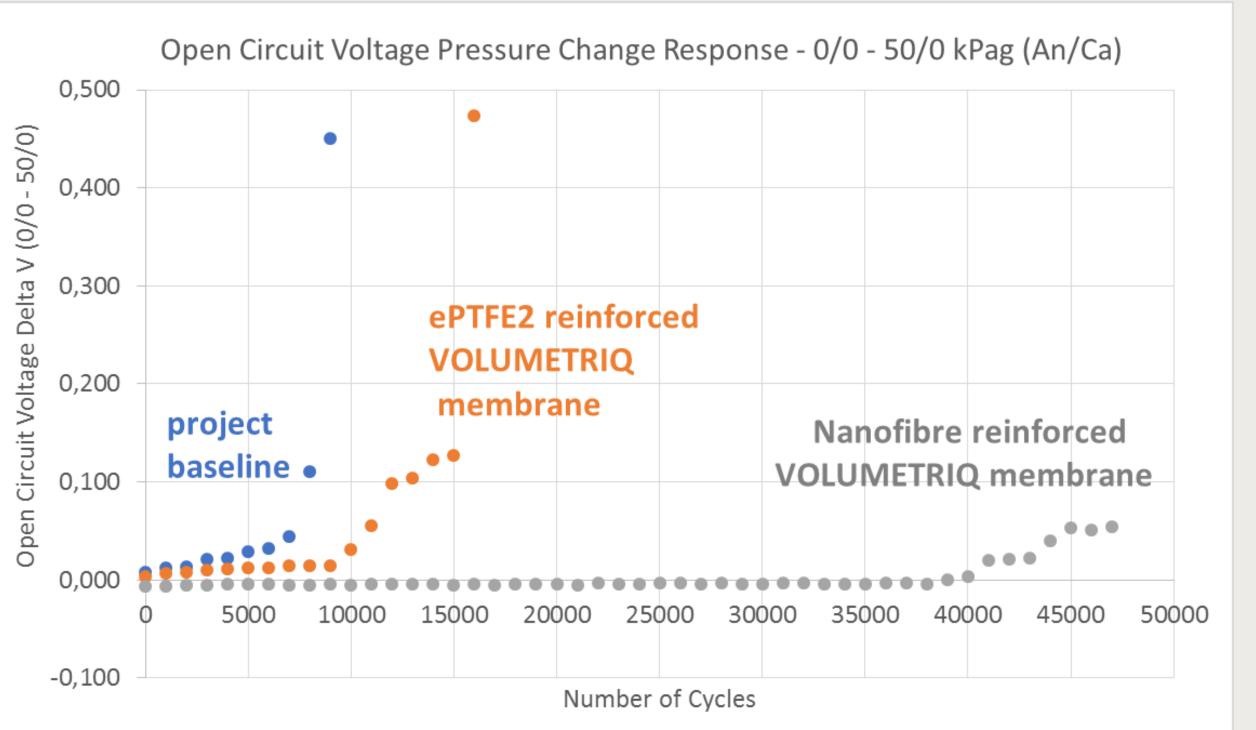
Step-change improvements in power density at 0.6 V by introduction of improved ionomer, cathode construction and GDLs, and set of compression

PROJECT PROGRESS/ACTIONS – Membrane durability with novel reinforcement, and reinforced membrane scale-up

- VOLUMETRIQ durability target for reinforced membrane in fuel cell OCV hold / relative humidity cycle AST: 20 000 cycles
- MAWP target: N/A; DOE target: 20 000 cycles
- Project baseline membrane using conventional reinforcement: 8 000 cycles
- VOLUMETRIQ membrane with thermostable nanofibre reinforcement, from pilot-scale fabrication: 50 000 cycles

PROJECT PROGRESS/ACTIONS – Membrane durability with novel reinforcement, and reinforced membrane scale-up

Project Achievement


50 000 AST cycles
Reinforcement scale-up
Reinforced membrane
prepared at pilot scale

Status at month 38 of 42 month project at 01/11/2018

Initial

20 000 AST cycles
Volume
production of
novel reinforced

membrane

Target

Step-change durability improvement in AST at 90 °C with thermostable nanofibre reinforcement, all other components identical

PROJECT PROGRESS/ACTIONS – Automated Stack Assembly and In-Line Quality Control

- Automated assembly process confirmed through the successful assembly of a ca. 100 stacks
- QC measurement equipment capability confirmed and installed in EK facilities, first measurements running
- Performance target of 1.50 W/cm² exceeded with the project baseline single cell hardware
- VOLUMETRIQ cell hardware has 30% greater surface area and optimised cell design features. Attaining the target 5.0 kW/L is expected with 1.50 W/cm² single cell performance

Status at month 38 of 42 month project

at 01/11/2018

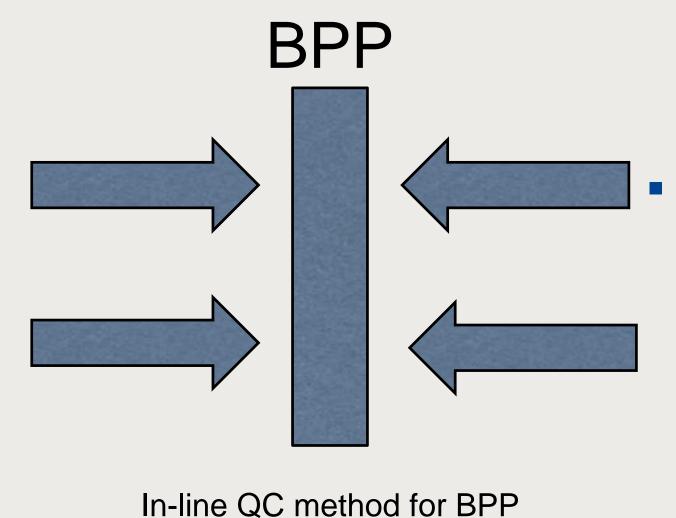
PROJECT PROGRESS/ACTIONS – Automated Stack Assembly and In-Line Quality Control

Project Achievement

Automated Stack Assembly
Line
Quality Control
Stack Power Density

Status at month 38 of 42 month project at 01/11/2018

Initial
Manual stacking
process
Slow QC
processes


25% 50% 75%

Target

Automated, >10 000 / year Integrated, high precision QC

- High Precision Quality equipment integrated in the QC Processes of the produced BPPs.
 - Measures the BPP geometry in-line from both sides to an accuracy of ca. 2 μm, ensuring the production of BPP with the desired geometry and within tolerances

Risks and Challenges

Risks, Bottlenecks and Challenges	Measures taken
Redesign of bipolar plates for NM12 stack	3 month delay absorbed by shortened lead time on ensuing activities
Thermostable polymer used for nanofibre reinforcement contaminated by a salt used for polymer solution stabilisation	Change to a different thermostable polymer
Electrospun web reinforcements have different handling properties from ePTFE membrane reinforcements	Increased number of scale-up and manufacture trials
Reproducing performance of hand-made CCMs with high volume manufacture CCMs	Adapt a processing condition of the high volume manufacture

Communication and Dissemination Activities

VOLUMETRIQ web site

www.volumetriq.eu

VOLUMETRIQ Brochure and Newsletters

Published electronically and hardcopies:

- Project information pamphlet at M6
- Annual newsletters at M9, M21, M33 (and M42)

VOLUMETRIQ Publications

New perfluorinated ionomer with improved oxygen permeability for application in cathode PEM-FC, Journal of Power Sources 396 (2018) 95–101
 Design of Heterogeneities and Interfaces with Nanofibres in Fuel Cell Membranes, Handbook of Nanofibers. Springer, pp 1-37, 2018

VOLUMETRIQ conference presentations and public reports

4 invited oral and 4 poster presentations at international conferences VOLUMETRIQ communication materials disseminated at 2 trade fairs 8 public deliverable reports on-line at www.volumetriq.eu

VOLUMETRIQ participation in FCH 2 JU events

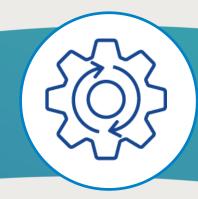
Oral presentation at PRD 2016, Posters + Stack Demo at PRD 2016, 2017 Presentation at Workshop on Manufacture (Oct 2018)

Social media

#VOLUMETRIQPEMFC

EXPLOITATION PLAN

Exploitation Plan Item	Partner	Exploitation Activity
Product commercialisation	Solvay	To commercialise an improved Aquivion ionomer grade
	EK	To commercialise the NM12 automotive stack
	JMFC	To commercialise novel reinforced membrane
Use of components in next generation MEA products	JMFC	To introduce VOLUMETRIQ components in next generation MEAs as commercial products
Use of production line	EK	To use automated stack assembly line to assemble stacks at high volume
Technology improvement	EK	To use improved manufacturing technology to produce products to automotive quality with lower cycle time and increased yield
Further R&D	JMFC, CNRS	To continue the development and scale-up of electrospun reinforcement technologies for fuel cell membranes
	Solvay	To complete development of a high gas diffusion ionomer and evaluate commercialisation potential
•••		



Potential Impact

 Optimised CCM roll-in feed, automated assembly and in-line quality control, with potential for assembly of >1 million cells/year, and stack power density >5.0 kW/L

Automated Assembly

 High volume reel-to-reel manufacture of membrane and CCM conversion with in-line quality control

(Yº)

CCM manufacture

PEM

()

High Volume
 Manufacture and In-Line
 Quality Control

 CCM with step-change durability through novel membrane reinforcement technology

CCM

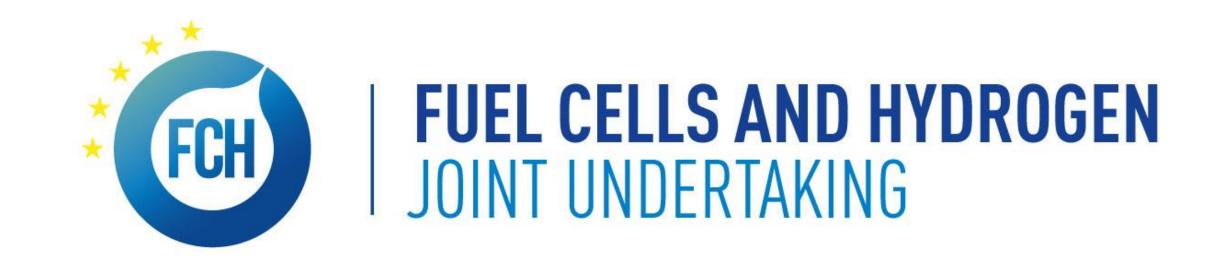
European Supply Chain for Automotive Stack Components

Stack power

SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES

Interactions with projects funded under EU programmes

from VOLUMETRIQ to INSPIRE: modified conventional and novel nanofibre reinforcements


from INSPIRE to VOLUMETRIQ: gas diffusion layers

from VOLUMETRIQ to GRASSHOPPER: modified conventional reinforcements

between VOLUMETRIQ and FitForAmanda: FitForAmanda will share their experience of automated stack assembly with the VOLUMETRIQ team at a workshop organised by INSPIRE

VOLUMETRIQ

VOLUme Manufacturing of PEMFC Stacks for TRansportation and In-Line Quality Assurance

Deborah Jones

CNRS

www.volumetriq.eu

Deborah.Jones@umontpellier.fr

Programme Review Days 2018

Brussels, 14-15 November 2018