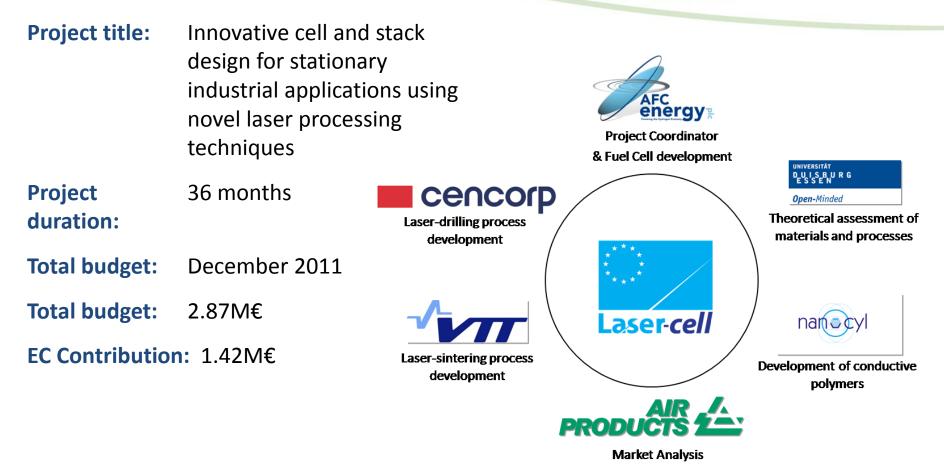


Project LASER-CELL

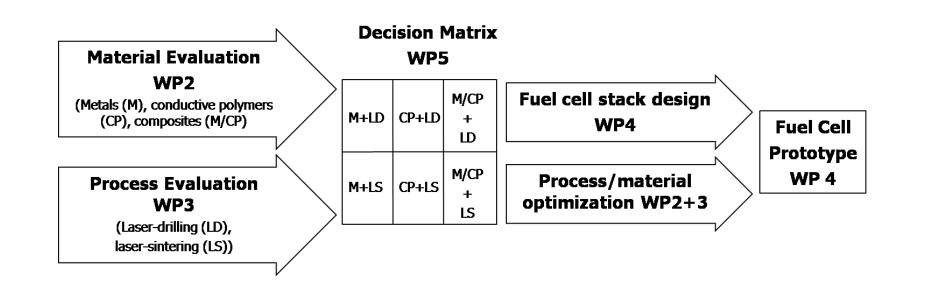

(Contract number: 278674)

Scientific & Technical Coordinator:

Dr. Martin Thomas AFC Energy plc

Project LASER-CELL OVERVIEW

KEY PROJECT FACTS


Consortium partners' key responsibilities

Project LASER-CELL WORK PLAN OVERVIEW

PROJECT SUMMARY

Main fuel cell component considered: po Component materials considered: me Manufacturing processes considered: las

porous electrode substrate metals, conductive polymers, metal/polymer composites laser-drilling, laser-sintering

Project LASER-CELL OBJECTIVES

LASER-CELL OBJECTIVES

- DESIGNING A NOVEL Alkaline Fuel Cell (AFC) BASED ON LASER-PROCESSED SUBSTRATES that provide optimised technical and commercial characteristics.
- ASSESSING AND ADAPTING STATE-OF-THE-ART LASER MANUFACTURING TECHNIQUES and incorporating their benefits (while taking account of their restrictions) in the fuelcell design.
- DESIGNING AN INNOVATIVE FUEL-CELL STACK to operate in industrial stationary settings, which delivers safety, mass manufacture, ease of assembly, recyclability, serviceability and optimal performance.
- Combining the above objectives in order to ESTABLISH THE COST-COMPETITIVENESS OF THE AFC TECHNOLOGY in comparison with all competing technologies – confirming for the first time the commercial viability of AFCs in large-scale stationary applications.

Project LASER-CELL MILESTONES FOR YEAR ONE

FOCUS IN YEAR ONE:

- Initiation of project
- Evaluation of different substrate materials
- Evaluation of laser processes
- Theoretical analysis of substrate geometries

MILESTONES IN YEAR ONE:

- MS1: Approval of project initiation documents
- MS2: Identify most suitable conductive polymer
- MS3: Project awareness achieved
- MS4: Completion of prototype machines

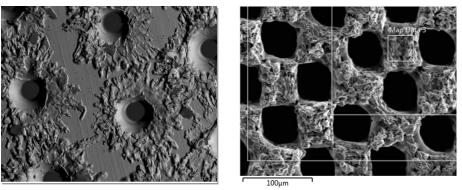
Project LASER-CELL CENCORP: LASER-DRILLING OF METALS

AIM

Reduce processing cost of existing process

APPROACH:

Investigate the process sensitivity in terms of:


- Different laser sources
- Different metals
- Different substrate thicknesses
- Different laser parameters

RESULTS:

- Drilling speed can be increased six-fold, surpassing target of 4000 holes per second
- Distance between the holes could be significantly reduced, allowing more porous substrates with better functionality

SEM of laser entry side in nickel of standard process (left) and the optimised process (right).

Project LASER-CELL NANOCYL: CONDUCTIVE POLYMERS

AIM:

Determine a conductive polymer suitable for alkaline environments and laser-processing:

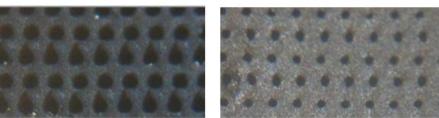
- Conductive polymer powders for laser-sintering
- Conductive polymer sheet for laser-drilling

RESULTS:

- Suitable polymers identified
- Powders for sintering trials supplied to VTT
- Polymer sheet production processes developed
- Sheet material supplied to AFC Energy & Cencorp

Process→	Master- Batch	Compression molding	Injection molding	Sheet extrusion
↓ Polymer				
HDPE	Done	Done	Waiting for new mold to start trials	Done
PEEK	Done	Not possible (temperature limitation)	Waiting for new mold to start trials	Sourcing 3 rd party extruding company
PPE (Noryl)	Done	Done	Waiting for new mold to start trials	

Status of the process development for the polymers selected for the project.


Project LASER-CELL CENCORP: LASER-DRILLING POLYMERS

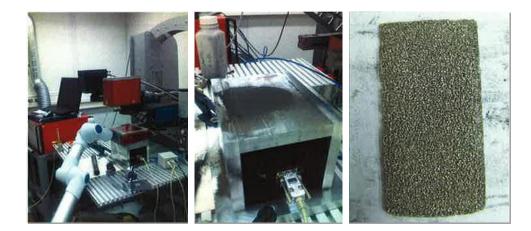
RESULTS:

- Conductive polymer sheets laserdrilled successfully for the first time
- Established that drilling is possible for a wide range of thicknesses

cencorp

HDPE: laser-entry (left) and exit (right) holed at 0.5mm (top) and 1mm (bottom)

Project LASER-CELL *VTT: LASER-SINTERING*


AIM

 Develop novel production process that allows rapid production of lasersintered substrates from metals and conductive polymers.

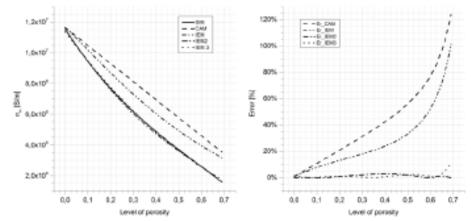
RESULTS:

- Laser-sintering prototype completed
- Prototype includes pre-heating chamber for polymer powders
- First successful trials with metal powders

Laser-sintering prototype at VTT in Finnland (left and middle) and porous metal sample produced (right).

Project LASER-CELL UDE: THEORETICAL ANALYSIS

AIM


 Develop and apply methods to efficiently analyse different substrate geometries with regards to performance and cost

Open-Minded

RESULTS:

- Detailed investigation regarding the effect of porosity on substrate conductivity completed
- Cost model for the evaluation of different process/material combinations completed

Approximation functions for the effective in-plane-resistivity of a porous nickel-substrate and errors compared to the conductivities directly calculated from the simulation

Project LASER-CELL AFC ENERGY: FUEL CELL TESTING

AIM

• Validate novel substrates under real, alkaline fuel cell operating conditions

RESULTS:

- Comprehensive base-line document approved by all partners that describes testing standards
- Fuel cell test stands upgraded with humidification
- Alkaline leaching tank for evaluation of conductive polymers in operation

Upgraded fuel cell test stands at AFC Energy's laboratory

Project LASER-CELL NEXT STEPS

YEAR TWO MILESTONES AND DELIVERABLES :

- Continued development of laser processes
- Evaluation of novel fuel cell stack concepts
- Development of complex alkaline fuel cell model
- Selection of optimal substrate material and manufacturing process
- Produce a prototype of the final substrate design

Thank you very much for your kind attention!

For further information visit our website: <u>www.laser-cell.eu</u>