

<u>Degradation Signature</u> Identification for Stack Operation Diagnostic (256693)

Florence LEFEBVRE-JOUD

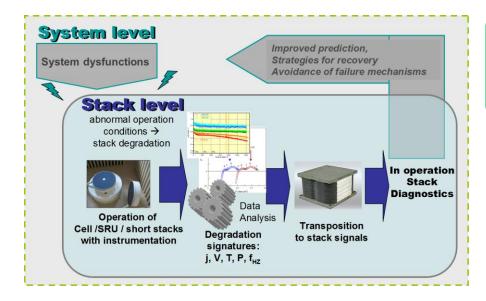
CEA LITEN/Program Manager

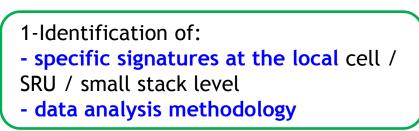
Design Partnership & Budget

3 years collaboration project: 01-01-2011 to 31-12-2013 Total budget: 3'266 k€ - Total funding: 1'746 k€

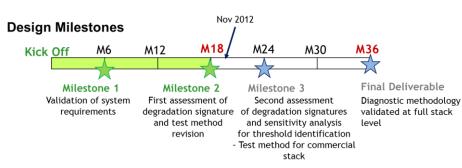
Participant	Country	Туре	
CEA	France	R&D	
VTT	Finland	R&D	
Eifer	Germany	R&D	
UNISA	Italy	University	
EPFL	Switzerland	University	
HFCS	Netherlands	Industry/SME	
HTc	Switzerland	Industry/SME	
EBZ	Germany	Industry/SME	

A European dimension with

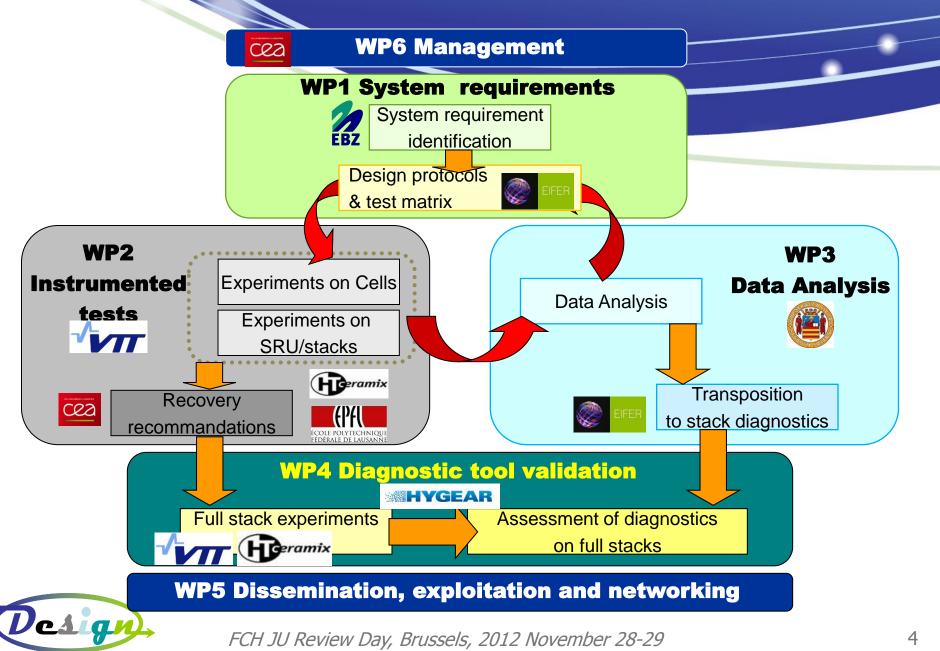



a good balance between academics, R&D centres and industries

Design Concept & Targets & current status


Overall objectives of the DESIGN project:

- \rightarrow through the understanding of the local responses of sub-stack elements
- → provide a sound diagnostic method for insidious phenomena that slowly accelerate the degradation at the commercial stack level,



2-**Transposition** from **local** signatures to **full stack** with limited instrumentation

Project Organisation

Design Technical Accomplishment Selection of Degradation Mechanism

Review of major system dysfunction & associated degradation mechanism and and analysis of their criticity on the basis of an HAZOP approach (summary available on www.design-sofc-diagnosis.com) \rightarrow ~15 cases analysed

Degradation phenomena to be studied in DESIGN:

- have a clear signature
- can be distinguished from other degradations
- have a potential of at least partial recovery

Those related to transient operation \rightarrow not considered

 \rightarrow Selection of most critical system dysfunction and degradation mechanism (occurrence and severity) to be investigated:

1) Anode re-oxidation by locally increased fuel utilizations

2) Carbon deposition

3) Small leakage at anode side

Design Technical Accomplishment Test protocols & test matrix

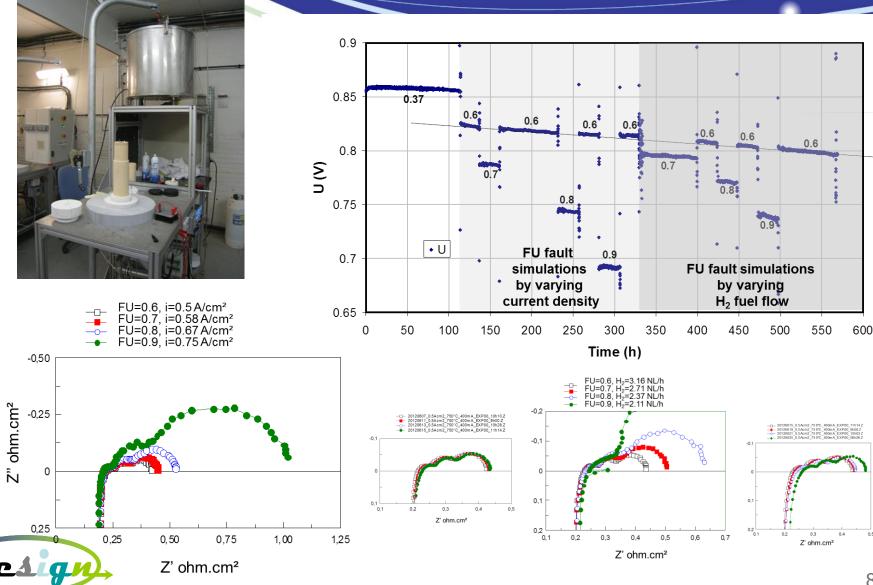
• Nominal testing conditions identified:

- Fuel composition as recommended in FCtestQA for internally steam pre-reformed methane at 10% (14% CH₄, 6% H₂, 28% H₂O, 1,8%CO₂,50% N₂ ...)
- Initial furnace temperature 750°C

Hydrogen

- Current density 0.5 A.cm⁻² for ASC and 0.3 A.cm⁻² for ESC
- Gas Flow to target FU of 60%
- Excursion to emphasize degradation mechanisms (on single cell, SRU and instrumented short stacks)
 - For High fuel utilization: progressive increase of current density or decrease of fuel inlet up flow to reach 90% FU
 - For carbon deposition: progressive decrease of S/C ratio and/or decrease of current density
 - For leakage: technological study on going to implement a controlled, and reproducible leakage

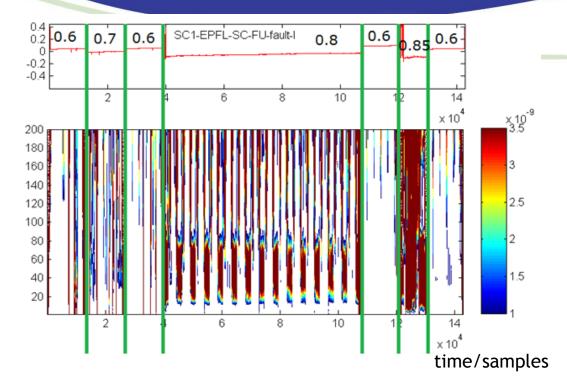
Design Technical Accomplishment First test Campaign


 13 successful full protocols achieved under hydrogen to characterize high fuel utilization fault

	Protocol 1: Increase of current density	Protocol 2: Decrease of flow rate
Single Cells	5	4
SRU	1	1
Short Stack	1	1

 \rightarrow Satisfactory signals, consistency between testing partners and between scales

Design Technical Accomplishment Ex of single cell behaviour

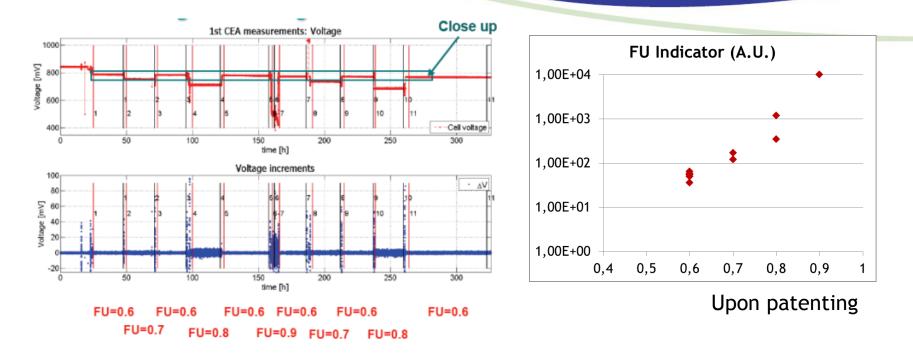

0,5

Design Technical Accomplishment Data Analysis Methodology (1/2)

CWT of the voltage signal, with coefficient scale varied from 1 to 200 for all contour plots and

color bar scale giving the value of the coefficient (the higher the value, the higher the similarity of wavelet and signal)

Coefficient pattern very similar for given $FU \rightarrow signature$ of a high FU. (Upon publication)



Using scale analysis technique, wavelet analysis (Continuous Wavelet Transform CWT) shows high capability to detect the **FU changes**.

The Wavelet Coefficients are a possible signature of FU changes

Design Technical Accomplishment Data Analysis Methodology (2/2)

Mathematical treatment of the time varying voltage signal, shows high capability to support the **FU changes detection analysis**:

 \rightarrow An indicator value has been identified that can be used as a signature of FU changes

Design Technical Accomplishment Summary vs AIP 2009

Expected output AIP 2009 Topic: 3.3 Call: 2009	Project Objectives	Status at 50% of the project	Expected revised objectives
Novel diagnostics to identify potential failures, including in- operation diagnostic tools for cell/stack	Set of characteristic signatures monitored during operation and related to specific degradation phenomena.	Selection of 3 relevant critical dysfunctions (over 15) to be studied	Focus given on 1 dysfunction and associated degradation mechanism to assess it and validate it on commercial stacks
Improved prediction and avoidance of failure mechanisms		Identification of signatures of high FU dysfunction (publication-patent)	
Tools for improved diagnostics and services			
Tools for improved diagnostics and services	Recommendations for recovery strategies.	not started yet	for high FU dysfunction

Design Technical Accomplishment Summary vs MAIP

Expected output MAIP - AA3 Stationary Power Generation & CHP	Project Objectives	Status at 50% of the project	Expected revised objectives	
Achieve the principal technical and economic specifications necessary for stationary fuel cell systems to compete with existing and future energy conversion technologies	Development of a Diagnosis methodology like in other mature competing techno	Development of a diagnosis methodology for high FU detection	Validation of the diagnosis methodology for high FU on	
Deliver reliable control and diagnostics tools both at a component and at system level	Main objective of the project		commercial stacks	
Include the use of multiple fuels	H ₂ and reformate	H ₂	H ₂ and reformate	
Include a lifetime increase up to 40,000h	Recovery strategy		Recovery strategy	

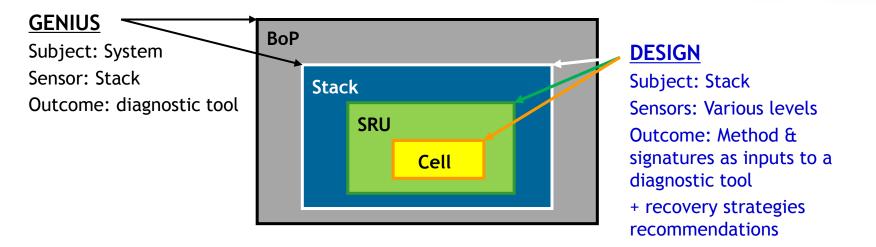
Cross-cutting issues: Education, Training & Dissemination

Education & Training:

1 PhD student funded at UNISA, who has spent time at partners laboratories (EIFER)

Organisation of workshops:

© Workshop 1, M3: to determine the most probable and the most critical events for the stack operation to be studied in the project with industry partners (SOFC system & cells and stack providers)


• Workshop 2, M24-M30: with sensor producers or integrators to collect knowledge of State of the Art sensors that are easy to integrate and cost effective, applicable to SOFC diagnostics. Linked with industrial event.

• Workshop 3, M30-36: Dissemination and exploitation workshop (SOFC system & stack providers)

www.design-sofc-diagnosis.com

Enhancing cooperation and future perspectives Technology transfer and collaboration

Collaborations

Technology Interfaces

Enhanced interface between SOFC manufacturers and signal treatment specialists and sensors producers

Enhancing cooperation and future perspectives Design Future perspectives

Project Future Perspectives

- Need/opportunities for international collaboration
 - High: Sharing fundamental approaches and understanding can accelerate the identification of relevant signals /signatures and the development of adapted sensors for diagnostic
- Possible contribution to the future FCH JU Programme
 - Development of a diagnosis hardware integrated into a commercial stacks for high FU dysfunction,
 - Extension of the approach to other "relevant" dysfunctions Design is focused on 2 1 degradation mechanism when some 15 ones have been listed (including transients ones); identifying the signatures from cells to stack and to system of these 15 degradation mechanisms remain challenging and deserves more effort

