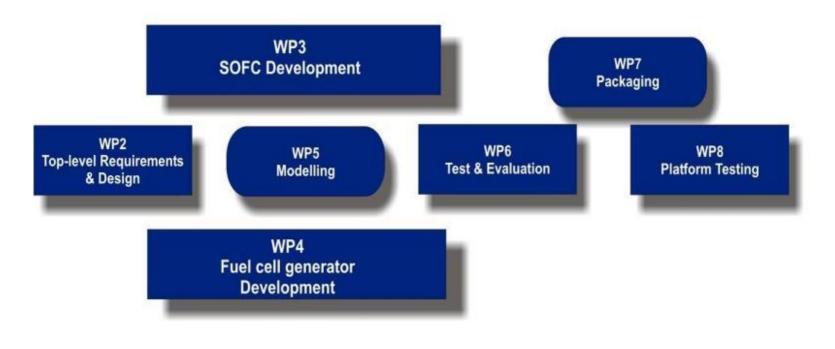
Fuel cells and hydrogen Joint undertaking

S ofc U nmanned A erial V ehicle

SUAV (278629)

Erich Erdle / Michael Walter, Ellart de Wit efceco / HyGear

Programme Review Day 2012 Brussels, 28 & 29 November 2012


0. Project & Partnership description

- SUAV «Microtubular Solid Oxide Fuel Cell Power system development and integration into a Mini-UAV »
- 36 Months, project start December, 1, 2012
- Total Budget: € 4,187,100.00 / FCH JU contribution € 2,109,518.00
- Consortium composed of 10 partners from 6 countries
- 1. HyGear Fuel Cell Systems B.V., The Netherlands Coordinator, mech. BoP development
- 2. ADELAN Ltd., United Kingdom SOFC development
- 3. CATATOR AB, Sweden Pre-reformer development
- 4. CNR-ITAE, Italy System integration and testing
- 5. EADS Deutschland GmbH, Germany Modelling

- 6. EADS UK Ltd., United Kingdom elctr. BoP development, integration
- 7. efceco, GermanyTechnical management & Dissemination
- 8. University of Birmingham, United Kingdom SOFC development
- 9. Technical University of Szczecin, Poland Modelling
- 10. SurveyCopter, France System integration and Flight Mission

0. Project & Partnership description

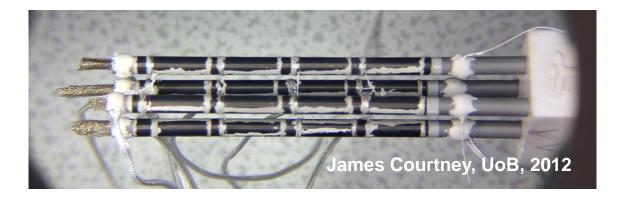
WP1: Project Management + Coordination

time

1. Project achievements 1/7 WP2- Top Level Requirements

- the top level requirements establishing the ultimate objective of the project are elaborated (WP2)
- the platform is identified

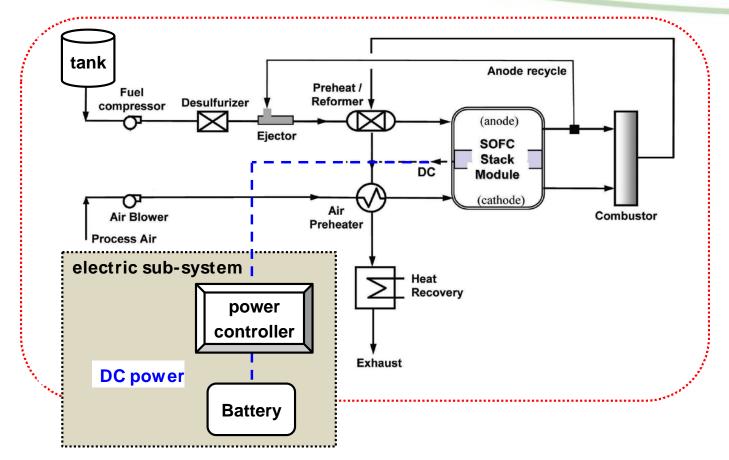
System Energy Requirements	Current UAV	SOFC UAV	Unit
Nominal Power	170	2 50*	W
Min. Power	30	30	W
Max. Power	2410	2410	W
Nominal Voltage	29,6	29,6**	V
Min. Voltage	24	24**	V
Max. Voltage	33,6	33,6**	V
Mass available for power system	3,88	3,88	kg
Volume available for power system	3,32	3,32	I



* Including parasitic loads for electrical Balance of Plant, charging and other loads introduced by FC

** Output after electrical BoP and any voltage conditioning

1. Project achievements 2/7 WP3 – SOFC Stack Development


- Development of micro-tubular SOFC cells and stack @ 250 W_e
- Testing procedures
 - ➡ in-house test procedure for first characterization
 - Applying test procedures defined by JRC

slight delay in stack development due to lower cell performance than anticipated risk mitigation by searching for alternative cell suppliers

1. Project achievements 4/7 WP5 - Modelling

baseline system design defined – modeling activities started

2. Alignment to MAIP/AIP 1/4 Correlation with MAIP – Early Markets

MAIP requirements/objectives	SUAV Objectives
400 portable & micro FCs on EU market in 2012	Project started in 2011, targeted to mini-UAV
12,000 – 13,000 portable & micro FCs on the EU market in 2015	Not on market, SUAV will end in November 2014, targeted to a mini-UAV prototype
Development of miniaturized BoP for specific devices	As the fuel cell generator including fueling has to fit into a mini-UAV the BoP components have to be miniaturized
Assessment of fueling supply options	On-board fueling with Propane for range extension
Supportive actions for SME	SurveyCopter is customer and contributor in SUAV SME, producer of mini-UAV and part of EADS HyGear Fuel Cell Systems B.V., ADELAN Ltd. and CATATOR SA as developer of the core modules
Pre-normative research on safety, emissions etc.	Is part of the Top Level Requirements task related to civil aviation

2. Alignment to MAIP/AIP 2/4 Correlation with AIP 2010

AIP requirements/objectives	SUAV Objectives and related WP
Stack power max. 200 W _e net.	Stack power 250 W_e
On-board fuel storage	Propane on-board storage (WP4)
Fuel Processing	Pre-reformer development (WP4)
Stack	mSOFC development (WP3)
Balance of Plant	Mechanical BoP development (WP4) Electrical BoP development and controls (WP4)
Power electronics and controls	Controls development (WP4)
Proof-of-Concept unit	Lab test unit (WP6) UAV unit (WP7)
System validation through testing	Laboratory test (WP6) Flight mission (WP8)
Life Cycle Assessment	Life Cycle and Sustainability Analysis (WP2)

2. Alignment to MAIP/AIP 3/4 Gaps/Bottlenecks in RTD&D proposed by MAIP/AIP

No gaps and bottlenecks detected

- Related to mini-UAV
- Related to demonstration of mini-UAV capabilities (flight mission)

3. Cross-cutting issues SUAV addresses and contributes to

- Training and Education of students and young researchers by
 - University of Birmingham
 - Technical University of Szczecin
 - CNR-ITAE
- Safety, Regulations, Codes and Standards by the Top Level Requirements (TLR) defined by the partner EADS UK
- Dissemination & public awareness by presentations and posters at
 - Fuel Cell Seminar & Exposition, October 31st November 3rd 2011, Orlando, USA
 - 8th International Conference & Exposition "Smart Hydrogen & Fuel Cell Power, March 29th 2012, Birmingham, UK
 - 9th Symposium on Fuel Cell and Battery Modeling and Validation, April 2nd 4th 2012, Sursee, Switzerland
 - Fuel Cell Systems Workshop, May 30th 31st 2012, Bruges, Belgium
 - Fuel Cell Seminar & Exposition, November 5th 8th 2012. Mohegan Sun, USA

Website http://www.suav-project.eu

4. Enhancing cooperation and future perspectives

- Technology Transfer / Collaborations
 - SUAV established valuable links to leading institutes and companies in the US with relevant expertise in the area, in particular with regard to tubular SOFC
- Project Future Perspectives
 - alternative SOFC options to mitigate the risk are under consideration
 - opportunities for international collaboration: see above
 - if successful a product development would be the next phase