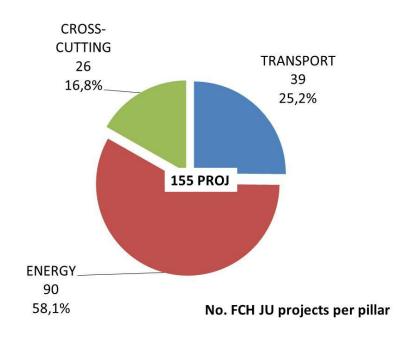
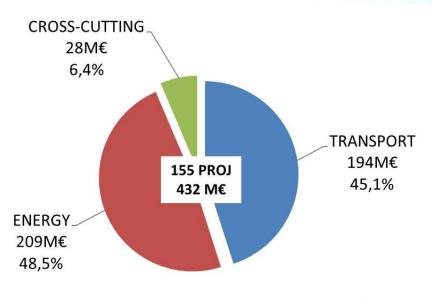


Introduction to portfolio of ENERGY demonstration projects

Mirela Atanasiu - Project Manager

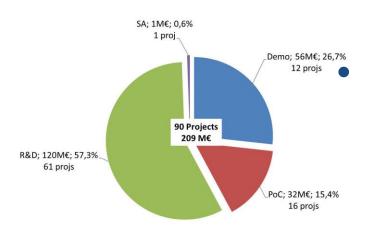

Team Leader Energy Applications



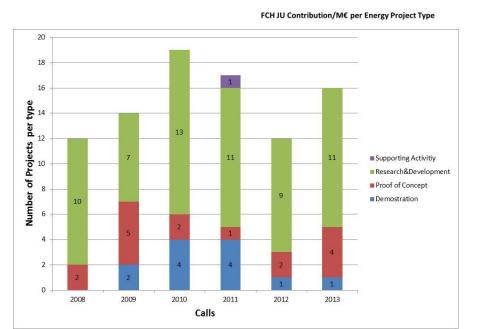
FCH for ENERGY: 90 projects 209 mill EUR committed by EU/FCH

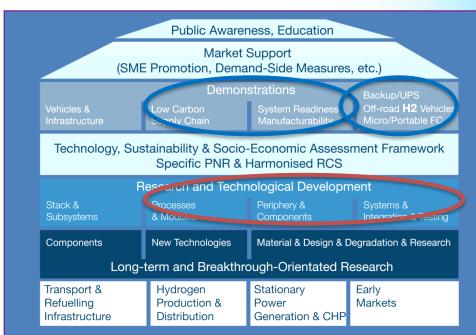
- Currently distributed in 3 different application areas:
 - Hydrogen Production and Storage
 - Stationary applications and CHP
 - Early markets (Back-up power and off-grid systems)

Almost 50% of the budget committed to ENERGY oriented projects



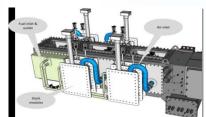
FCH JU Contribution/M€


88 mill EUR in demo-type projects for ENERGY applications


Energy projects still strongly R&D oriented

28 DEMO type projects

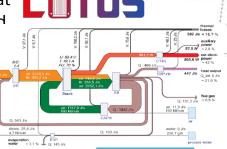
- 12 Field Demonstration
- 16 Proof-of-concept, components, diagnostics and control


RE4CEL

MAIP Coverage Technology/Activities Projects examples

CATION: optimal process and mechanical solutions for the cathode and stacks subsystems

new multi-fuel membrane reformer for pure


hydrogen production (5 Nm3/h) based on **Catalytic Membrane Reactors**

CHP system based on ASC technology, at reduced stack-temperature of 650C and high electrical efficiency (min. 45%)

SAPPHIRE: System Automation of PEMFCs with Prognostics and Health management

new DC/DC converter to use on-line electrochemical impedance spectroscopy (EIS) as diagnostic tool for back-up power and CHP applications

Proof of **Back-up Power** Concept, incl. 5 projects Components 16 projects

Electriolysers 2 projects

ndustrial CHP

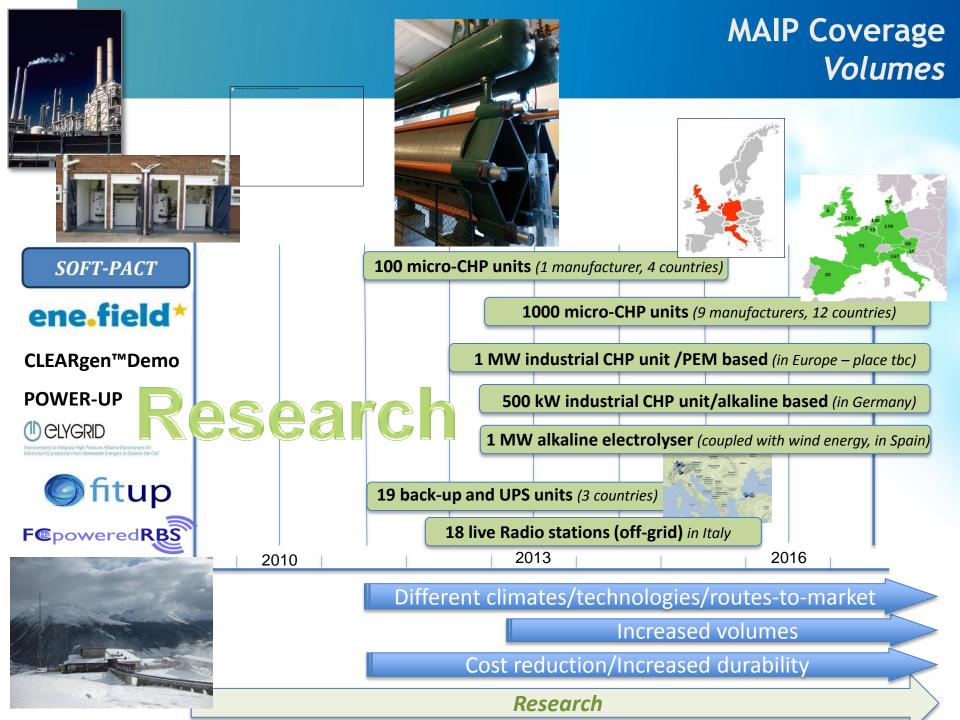
3 projects

humidifier

Micro-CHP

2 projects

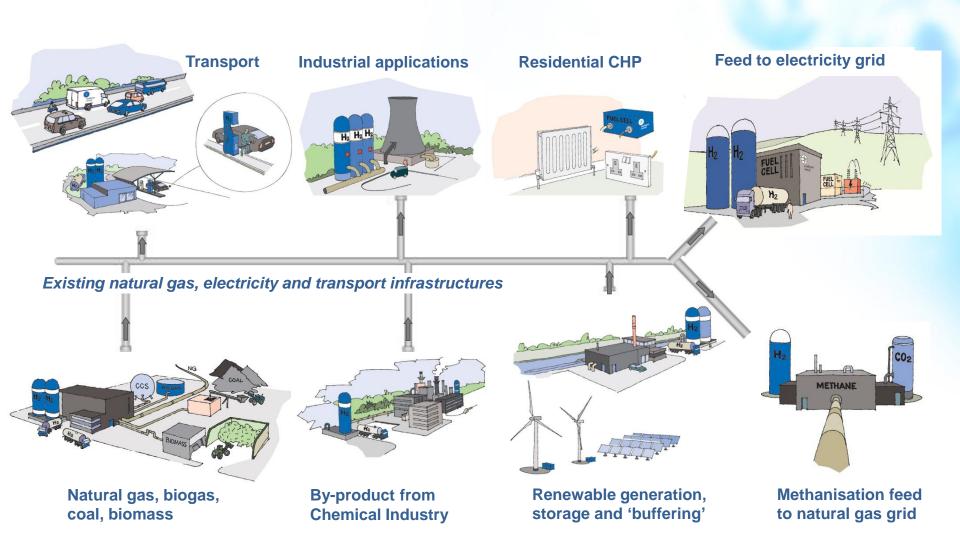
fuel cell stack heat exchanger recirculation pump


proof-of-concept CCHP plants based on SOFC fed by

different typologies of biogenous primary fuels (locally produced), integrated by a process for the CO2 recovery

> FluMaBack: Fluid Management component improvement for Back-up fuel cell systems

TriSOFC: low-cost durable low temperature (LT) SOFC trigeneration (cooling, heating and power) prototype


Important achievements in m-CHP early-demonstration

- More than 60 BlueGen units in DE, UK, NL
 - 56% electrical efficiency, 25% reduction of CAPEX
- More than 50 units in DE, FR, CH, IT, DK, UK
 - 8 field trials/manufacturers
 - Commercial discussions on-going (more than other 200 contracts signed and other 200 in final negotiation) – ramping-up of 500 units by Sept 2015
 - Electrical eficiency around 35% for PEM units and 45-50% for SOFC units

Challenges

- reduced interest of utilities (mainly electricity), although main route to the market – direct contracts with end-users less suitable for mass-deployment!
- Duration of service contract, some-time longer than life-time of the project
 related issue in addressing national/regional funding
- Only approx 1/3 of the end-users/houses contacted meet the required conditions for m-CHP installation
- Small quantity supply chain, need for training of installers etc

FCH2: Self Reliant in Energy Provision with Fuel Cells and Hydrogen

Energy-oriented objectives under FCH2

- 3 out of the 4 main objectives are in ENERGY
 - increase electrical efficiency and durability of the different <u>fuel cells</u> used for power production
 - increase energy efficiency of the production of hydrogen from water electrolysis and renewable sources
 - demonstrate the <u>feasibility of using hydrogen for</u> <u>energy storage</u> to support the integration of renewable energy sources into energy systems
 - + reduce the use of 'critical raw materials'

Energy priorities by 2020 Multi Annual Work Plan, MAWP

- Hydrogen production for energy storage and grid balancing from renewable electricity (water electrolysis)
 - Electrolysers Study already published
 - Energy Storage Study to be published soon

		State-of- the-art	2017	2020	2023
KPI 1	H2 production electrolysis, energy consumption (kWh/kg) @ rated power	57-60 @100kg/d	55 @500kg/d	52 @1000+kg/d	50 @1000+kg/d
KPI 2	H2 production electrolysis, CAPEX @ rated power including ancillary equipements and comissioning	8.0 M€/(t/d)	3,7 M€/(t/d)	2.0 M€/(t/d)	1.5 M€/(t/d)
KPI 3	H2 production electrolysis, efficiency degradation @ rated power and considering 8000 H operations / year	2% - 4% / year	2% / year	1,5% / year	<1% / year

- Hydrogen production with low carbon footprint from other resources
- Fuel cell systems for CHP and power only
 - Distributed Generation Study to be published soon
- Hydrogen storage, handling and distribution

Study under preparation

	Key performance indicator (KPI)	Unit	SoA	FCH-JU target			
Topic			2012	2017	2020	2023	
	CAPEX	€/kW	16,000	14,000	12,000	10,000	
	Durability	years of plant operation	10	12	13	14	
Residential:	Availability	% of the plant	97	97	97	97	
mCHP for single family	Electrical efficiency	% LHV	30-60	33-60	35-60	35-60	
homes and small buildings	Thermal efficiency	% LHV	25-55	25-55	25-55	25-55	
(0,3 - 5 kW)	LCOE	€ Ct/kWh	3*grid parity	2.5*grid parity	2*grid parity	<2*grid parity	
			NOx < 2	NOx < 2	NOx < 2	NOx < 2	
	Emissions	mg/kWh	ppm, no SOx	ppm, no SOx	ppm, no SOx	ppm, no SOx	

Thank you for your attention!

Further info:

- FCH JU (Programme Office) http://fch-ju.eu
- NEW-IG http://www.new-ig.eu
- N.ERGHY http://www.nerghy.eu