Hydrogen Production, Storage & Distribution

N. Lymperopoulos

D. Tsimis

C. Pavel

Project Officers

PRD parallel sessions on H₂ production, storage & distribution

23rd Nov. 11:00 - 12:20

Electrolysers for Industrial & Storage Application

23rd Nov. 12:30 - 13:50

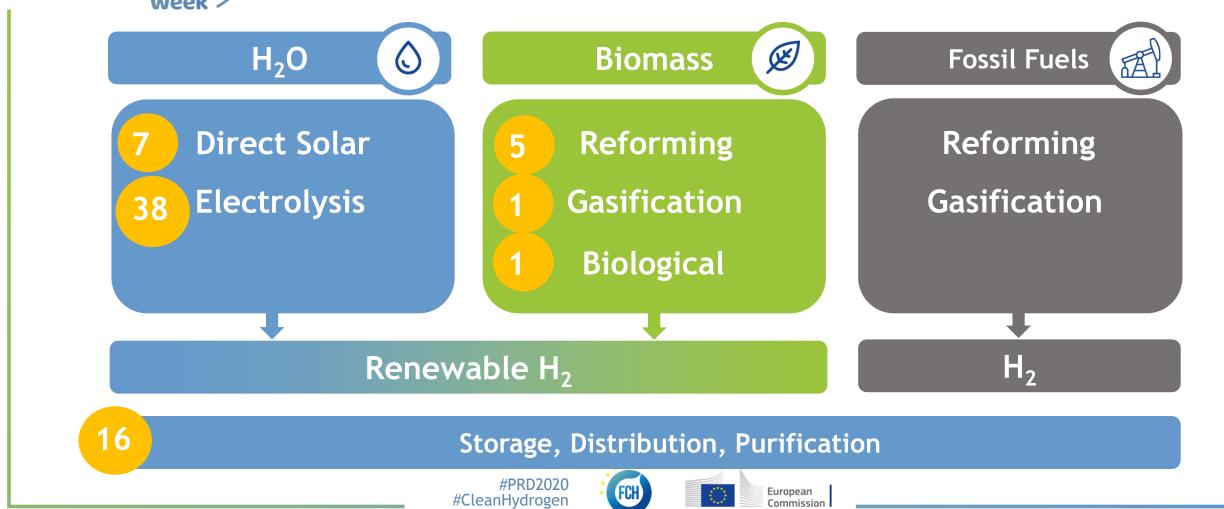
Next Generation Electrolysers

23rd Nov. 14:00 - 15:20

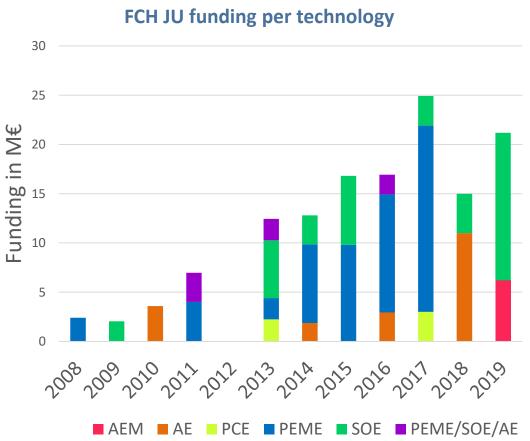
Alternative Renewable Hydrogen Production

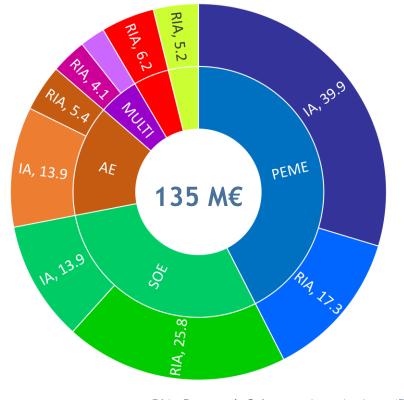
24th Nov. 14:00 - 15:20

Hydrogen Distribution & Carriers



Hydrogen Production, Storage & Distribution Technical Coverage


68 projects, 204MEuro, 18% of FCH JU support. Only renewable H₂



Electrolysis Research and Demonstration

Support increasing annually, covering different types of electrolysers

Electrolysers, M€ FCH JU support

RIA: Research & Innovations Actions (RTD)
IA: Innovation Actions (Demo)

* FCH Europear Commiss

#CleanHydrogen

LT Electrolysis Demonstration projects - 1

In 8 years capacity increased 100× and support per MW installed reduced 50×

Project: **Don Quichote**

Place: Belgium Date: **2011**

Electrolyser: Hydrogenics

(PEM)

Funding: 5.0 m€

Project: **Haeolus** Place: Norway Date: **2017**

Electrolyser: Hydrogenics

(PEM)

Funding: 5.0 m€

Project: **H2future**Place: Austria
Date: **2016**

Electrolyser: Siemens

(PEM)

Funding: 12 m€

Project: **Djewels**

Place: The Netherlands

Date: 2018

Electrolyser: McPhy (ALK)

Funding: 11 m€

0.15 MW

1.2 MW

2.5 MW

3.4 MW

6.0 MW

10 MW

20 MW → 60MW 100 MW

Project: **Hybalance** Place: Denmark Date: **2014**

Electrolyser: Hydrogenics

(PEM)

Funding: 8.0 m€

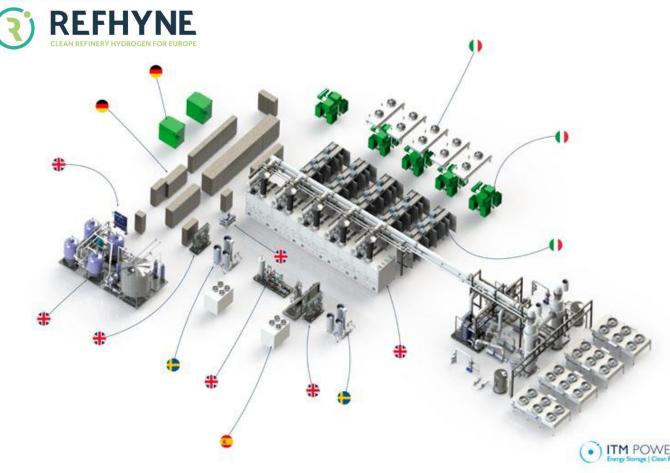
Project: **Demo4grid**Place: Austria
Date: **2016**Electrolyser: IHT (ALK)
Funding: 2.9 m€

Project: **Refhyne**Place: Germany
Date: **2017**Electrolyser: ITM
(PEM)

The European Green
Deal call for proposals
includes a topic to
install a 100MW
Electrolyser.
Call OPEN

#PRD2020 #CleanHydrogen

LT Electrolysis Demonstration projects - 2

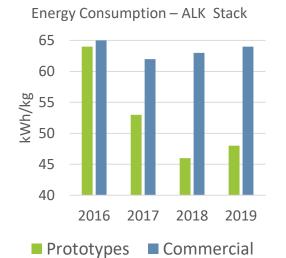

New challenges; Supporting EU H₂ policies

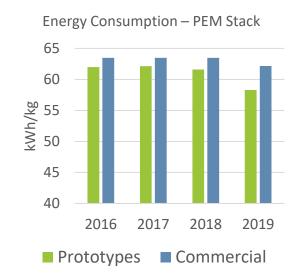
Electrolyser OEMs addressing new challenges when operating electrolysers in industrial courtyards

Industry familiarising with novel electrolysis, updating risk analysis

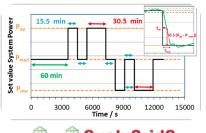
Established a solid basis on which the EU H₂ strategy was built

Supporting the European value chain




LT Electrolysis R&I projects

Achievement of MAWP targets safeguards Europe's leading position

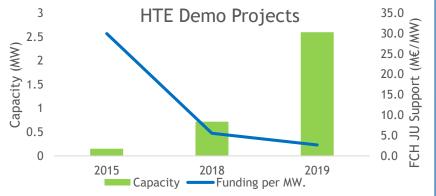


HT Electrolysis Demonstration projects

HTEs finding their place in the industrial courtyard, facilitating strategic partnerships

PAUL WURTH BECOMES NEW LEAD **INVESTOR AND TECHNOLOGY** PARTNER OF SUNFIRE

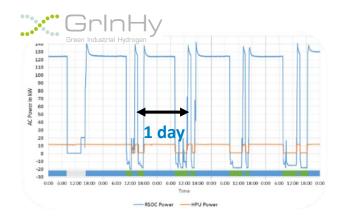
Rotterdam **Neste Biorefinery** 2019 2.4MW 🔬 MULTIPLHY 🦍


NESTE INVESTS IN SUNFIRE

Iron and Steel Works 2018 720kW

In 5 years capacity increased >10x and support reduced by 5x

Saltzgitter Iron and Steel Works 2015 150kW



HT Electrolysis R&I projects

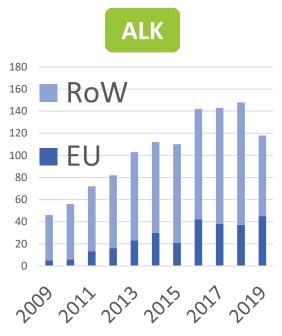
Higher efficiencies, improved durability, innovative concepts

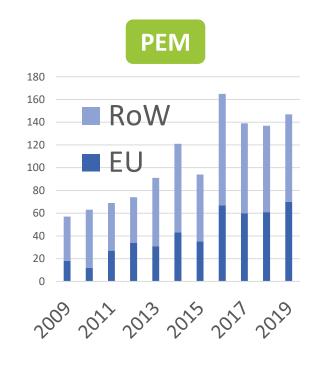

Electricity consumption < 40 kWh/kg

Production loss rate < 1.9%/1000h

Availability >95%
Reversible FC efficiency 54%

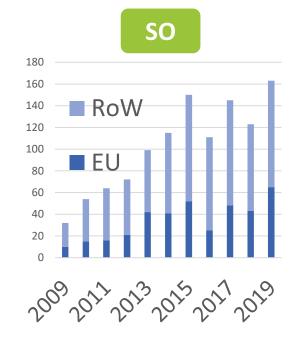
Current density 1.25A/cm2 Steam conversion rate > 85%





Electrolysis: Number of publications, patents, etc. 2009 - 2019 (JRC - TIM tool)

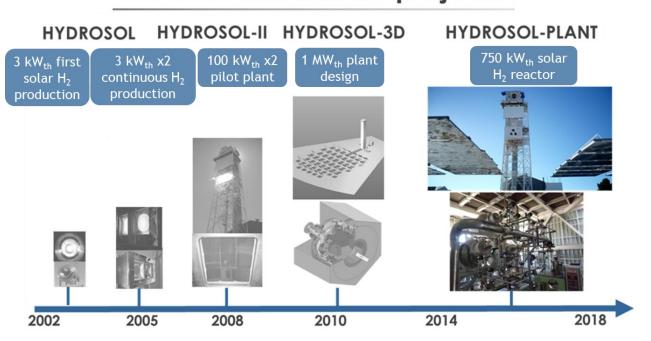
EU has 1/4 - 1/2 of global entries



EU 406, China 350, USA 164, Japan 234, S. Korea 118

EU 593, USA 218, China 145 Japan 126, S. Korea 80

EU 491, China 386, USA 260, Japan 106

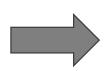


Direct production of H₂ from sunlight - 1

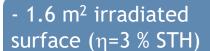
Large improvement of redox thermochemical cycles for water dissociation using concentrated solar-thermal power

Previous HYDROSOL-projects

Production of structured redox materials and aging > 150 cycles (out of 1000)


Improvements of the reactor design for laboratory efficiency of ≥10%


Demonstration of efficiency >5% in the field tests of the 750 kW_{th} plant



Direct production of H₂ from sunlight - 2

Scale-up and outdoor demonstration of a photo-electrochemical (PEC) system with an PV area exceeding 10 m²

- Hybrid PEC-EV
- $\eta = 9 \% STH$
- 4x50 cm²

- PV-electrolyser concept
- 10 m² prototype
- $\eta = 9 \% STH$
- LCOH = 4 10 €/kg

Demonstration of 10 m² direct coupled PV-EC device

2011

Biomass gasifiers & reactors; Biogas reformers

Singular projects on biomass; Recent emphasis on biogas compact reformers

Dry biomass: H₂ <5 €/kg from biomass gasification

2012

UnifHy 1MWth plant - 500kg/d

Wet biomass: Dark fermentation at lab scale

2012

HYTIME 1MWth plant - 1 kg/d

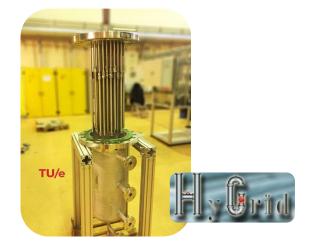
2015

2017

Efficient separation / purification of H₂

Preparing for Hythane, underground storage, H₂ as byproduct

H₂ recovery using Pd membranes < 5kWh/kgH2



Cost of purified H₂ < 1.5 €/kg

5-25 kg H₂/day, H₂ delivery @ 200 bar 🔼 (3)

Storage & Distribution of H₂

MH tanks, & Liquid Organic carriers

<0.5 €/kg additional cost

Undeground storage in salt caverns

2012

LOHCs 2018

#PRD2020 #CleanHydrogen

H₂ Capacity with tank (wt%) ≈ 2%

Material cost < 30€/kg (1,500€/kg H₂)

MH Tanks

2019

Conclusions

Best in class electrolysers have met 2020 KPIs with more ambitious targets & improvements in manufacturing coming up to keep EU leadership

Projects proved electrolysers as a reliable enabler for Sectorial Integration and helped bring renewable H₂ to the centre of EU energy policy

Alternative routes for renewable H₂ production have moved from lab to field, further improvements required for market readiness

H₂ storage R&D supported - from MH tanks to salt cavers; major role in the future partnership

