

PACE Pathway to a Competitive European Fuel Cell micro-CHP Market

Pathway to a Competitive European Fuel Cell micro-CHP Market

EPACE

Programme Review Days 2018 Brussels, 14-15 November 2018

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Olivier Bucheli

CBDO SOLIDpower / Committee Leader CT4

www.pace-energy.eu

W5H62991

projects@cogeneurope.eu

What is Fuel Cell micro-Cogeneration?

Fuel Cell micro-Cogeneration is a highly efficient home energy system that simultaneously produces heat and electricity

Heat

Electricity

System Efficiency:

up to **95%**

Electrical Efficiency: up to **60%**

Principle of a Fuel Cell – Electrochemical Energy Conversion

Fuel flexible

Technology neutral!

electrochemical oxidation

Solid Oxide Fuel Cell, SOFC external circuit

No NO_x No SO_x No PM

Principle of co-generation

Immediate savings, with any fuel

* Including, but not limited to, biomass, biogas, coal, geothermal, hydrogen, (bio-)LPG, natural gas, residual waste and solar thermal

Stationary Cells offer:

- Primary energy reduction
- Reliability
- Modularity
- Distributed generation
- Power at low-voltage level

Why Fuel Cell micro-Cogeneration?

Heating and Powering your Home

We offer CO2 savings TODAY!

Fuel Cell CHP vs. alternative solutions*

Efficiency - Reversibility

From energy conversion to energy storage

Solid Oxide Fuel Cell, SOFC

external circuit

Solid Oxide Electrolyser, SOE

PROJECT OVERVIEW

- Call year: 2016
- Call topic: Large scale demonstration of μCHP fuel cells
- Project dates: 01/06/2016 31/08/2021
- Stage of implementation 01/11/2017: 46% as of 01/11/2018
- Total project budget: EUR 90,307,094.50
- FCH JU max. contribution: EUR 33,932,752.75
- Other financial contribution: EUR 56,374,341.75
- Partners: BDR Thermea, Bosch, COGEN Europe, DTU, Element Energy, EWE,
 SOLIDpower, Sunfire, Viessmann

Fuel Cell micro-Cogeneration empowering consumers towards a low-carbon future

PACE at a glance

Promoting a successful transition to the large scale uptake of Fuel Cell micro-Cogeneration across Europe

Field trial + installer training + targeted market & policy development activities Field trial + local installer training

units

Representing manufacturers, utilities & research community

2021

EPACE Pathway to a Competitive European Fuel Cell micro-CHP Market

State of the Art: The Japanese case

Fuel Cell micro-Cogeneration: Best practices

Japanese Fiscal Year

Source: Fuel Cell Commercialization Conference of Japan (FCCJ)

Ene-Farm programme

- In September 2018, 260,000 micro-CHP units had been installed in Japan under the Ene-Farm programme.
 - By 2030 the Japanese government aims to have 5.3 million units installed.
- Thanks to Ene-Farm, the increase in volumes led a major reduction of installation costs: in 2009 the cost per unit was around EUR 24,000 (3,3 mln YEN), while in 2015 it had decreased to approximately EUR 8,500 (1,14 mln YEN).

State of the Art: The Japanese case

Fuel Cell micro-Cogeneration: Best practices

Source: Fuel Cell Commercialization Conference of Japan (FCCJ)

1.60 1.40 (million yen) 1.20 1.00 installation 0.80 0.60 9.0 Subsidy for 0.40 0.20 (0.16/SO) + 0.00 2017

Lessons learned for Europe

- The Ene-Farm programme provided a subsidy that initially covered close to 50% of the product cost.
- The predictability of Ene-Farm contributed to its success, in that support was linked to the industry's commitment to reduce product cost and reductions in the support level were announced in advance.

EU specific challenges:

- **Different market & policy conditions** across **EU** countries
- Insufficient awareness of the technology
- **Regulatory & policy barriers** to address

Driving the Fuel Cell micro-Cogeneration sector closer to mass market uptake

How to overcome the point of greatest risk in new product commercialisation?

Fuel Cell micro-Cogeneration units demonstrated technology readiness in **European and national demo** projects PACE is driving the Fuel Cell micro-Cogeneration sector closer to mass market uptake.

Room for testing different business models, like energy as a service linked to financing and lease models.

Overview of systems in PACE

nnoGen2018	Vitovalor	Vitovalor SA2	Sunfire-Home
Darks			
500	75	50	500
LT-PEM	PEMFC	PEMFC	SOFC
0.7kW	0.75kW	0.75kW	0.75kW
BDR THERMEA GROUP	VIESMANN	VIESMANN	sunfire
2 family houses (for new and sting buildings)	Domestic and si	mall commercial	Residentia building (with supply)

PACE units across Europe

Overview of deployment activities

Field trial + installer training + targeted market & policy development activities

Field trial + local installer training

Number of units sold per country as of 09/2018

Customer satisfaction

Surveys show that more than 90% of end users are pleased with the environmental performance, the comfort and warmth and running costs of their fuel cell microcogeneration unit

90% of the FC micro-CHP systems were available for at least 95% of the time

"After the installation of the Fuel Cell micro-Cogeneration unit in my car dealership, my demand of energy decreased by 10.000 kWh per year and I save €2,200 Euro in electricity cost every year."

Yakup Ak, managing director at Autoport Cologne

BUGGEN

"With Fuel Cell micro-CHP we have many advantages in one single compact unit. To install a unit, households need nothing more than a gas connection and an electricity connection."

André Bartels, CEO, Carl Cordes GmbH

Conclusions and recommendations

Fuel Cell micro-Cogeneration

No regret

X

Future compatible

Providing the fastest carbon reduction pathway

30-50% CO2 emission reductions TODAY

CØ,

Fuel flexible and technology neutral

FC m-CHP could be reversible and **fully** operated on H2 in the future

Enabler of the integrated energy system of the future

ξοζ

Policy framework to create a **level** playing field on the pathway to decarbonisation, accounting for all benefits of FC m-CHP

The integrated smart energy systems of the future

FCH SAND HYDROGEN JOIN

Background slides

Environmental life cycle assessment

- (i.e. gas condensing boiler, heat pump)

LCA GHG generally lower for fuel cell micro-CHP than alternative home energy solutions considered

Higher benefits for higher utilisation of the fuel cell & for more carbon intentisve power mixes

To read the Executive Summary of the ene.field project report "Environmental Life Cycle Assessment" click here. Case: "Not well-insulated" "single familyhome" in "Central Europe"

