#### Fuel cells and hydrogen Joint undertaking

#### Urban buses: alternative powertrains for Europe





Programme Review 28 & 29 November 2012

Carlos Navas, FCH JU Project Manager

A fact-based analysis of the role of diesel hybrid, hydrogen fuel cell, trolley and electric powertrains

### Rationale: Only through a fuel shift can transport in the EU achieve its target of 95% GHG abatement



# It is uncertain if conventional combustion engines will be able to fulfill requirements by a potential EURO VII norm or beyond



#### Result is that European cities focus on getting newest diesel engines until 2015 but, beyond that, seem to demand powertrains with lower emissions

Restrictions on diesel engineNon-fossil powertrain requirements

| Amsterdam<br>All buses at<br>least EEV <sup>2</sup><br>norm. Locally,<br>only EEV+<br>buses deployed |                                                                               | Brussels<br>No procurement<br>of diesel-<br>powered buses<br>from 2015<br>onwards                       | <b>Stockholm</b><br>Renewable <sup>1</sup><br>public transport<br>only |    |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----|
| Cologne<br>Only<br>procurement of<br>EEV <sup>2</sup> (and<br>better) buses                          | London<br>All buses meet<br>EUROIV. 300<br>hybrids in<br>service by<br>2012YE | <b>Oslo</b><br>All buses use<br>renewable<br>fuels <sup>1</sup> . EURO III<br>phased out<br>before 2013 | Hamburg<br>Only<br>procurement of<br>emission-free<br>buses            |    |
| 2005                                                                                                 | 10                                                                            | ↓<br>15 <sup>2</sup>                                                                                    | 20 20                                                                  | 25 |

1 Includes biofuels

2 EEV: Enhanced Environmentally friendly Vehicle is a EURO norm in-between EUROV and EUROVI

Source: Roadmap 2050; Dieselnet; Local city websites; 2001/81/EC; team analysis

#### Operators and policy makers wonder how to balance lower emissions with potentially increased costs and decreased performance



#### **Objectives, approach and scope of the study**



#### Scope

- 8 powertrains
- Standard 12 meter city buses
- Articulated 18 meter buses

Representing ~65% of European bus market

# The 'Urban Buses: Alternative Powertrains for Europe' coalition consists of more than 40 companies and organizations



1 Bombardier, Hydrogenics and ABB participate in both the Technology Providers and the Infrastructure working groups SOURCE: FCH JU; McKinsey

#### Diesel, CNG and diesel hybrids are powertrains in scope which rely (partly) on a conventional engine



# Hydrogen fuel cell, trolley and two e-buses are powertrains in scope with zero local emissions



#### **Powertrains were evaluated on three dimensions**

| Dimension                           | Main evaluation criteria                                                                          |
|-------------------------------------|---------------------------------------------------------------------------------------------------|
| Environment                         | <ul><li>Overall well-to-wheel emissions</li><li>Local emissions</li><li>Noise</li></ul>           |
|                                     | Range                                                                                             |
| Performance                         | <ul><li>Route flexibility/free range</li><li>Refueling time</li></ul>                             |
|                                     | <ul> <li>Acceleration</li> </ul>                                                                  |
| Total Cost of<br>Ownership<br>(TCO) | <ul><li>Purchase and financing costs</li><li>Running costs</li><li>Infrastructure costs</li></ul> |

#### **Powertrains were evaluated on three dimensions**

| Dimension                           | Main evaluation criteria                                                                          |
|-------------------------------------|---------------------------------------------------------------------------------------------------|
| Environment                         | <ul><li>Overall well-to-wheel emissions</li><li>Local emissions</li><li>Noise</li></ul>           |
| Performance                         | <ul> <li>Range</li> <li>Route flexibility/free range</li> <li>Refueling time</li> </ul>           |
|                                     | <ul> <li>Acceleration</li> </ul>                                                                  |
| Total Cost of<br>Ownership<br>(TCO) | <ul><li>Purchase and financing costs</li><li>Running costs</li><li>Infrastructure costs</li></ul> |

### Only the hydrogen, e-bus and trolley buses have the potential to drastically reduce well-to-wheel emissions...



#### ...and only the hydrogen, e-bus and trolley buses can achieve zero local emissions



### Perceived noise of a fuel cell hybrid is more than 3x lower than that of a conventional diesel



1 No measure figures available yet – expectations are similar to hydrogen fuel cell bus SOURCE: Study analysis

#### **Powertrains were evaluated on three dimensions**

| Dimension                           | Main evaluation criteria                                                                          |
|-------------------------------------|---------------------------------------------------------------------------------------------------|
| Environment                         | <ul><li>Overall well-to-wheel emissions</li><li>Local emissions</li><li>Noise</li></ul>           |
|                                     |                                                                                                   |
| Performance                         | <ul> <li>Range</li> <li>Route flexibility/free range</li> <li>Refueling time</li> </ul>           |
|                                     | <ul> <li>Acceleration</li> </ul>                                                                  |
|                                     |                                                                                                   |
| Total Cost of<br>Ownership<br>(TCO) | <ul><li>Purchase and financing costs</li><li>Running costs</li><li>Infrastructure costs</li></ul> |

### Performance of the hydrogen bus is similar to conventional powertrains



<sup>1</sup> Typical values shown here – pure electric range of hybrid powertrains varies depending on concept of auxiliary units and battery capacity 2 Based on a 60 kWh battery and a consumption (including losses from charging) of 2 kWh/km

SOURCE: Study analysis

#### **Powertrains were evaluated on three dimensions**

| Dimension          | Main evaluation criteria                                                                                      |
|--------------------|---------------------------------------------------------------------------------------------------------------|
| Environment        | <ul><li>Overall well-to-wheel emissions</li><li>Local emissions</li><li>Noise</li></ul>                       |
| Performance        | <ul> <li>Range</li> <li>Route flexibility/free range</li> <li>Refueling time</li> <li>Acceleration</li> </ul> |
| Total Cost of      | <ul> <li>Purchase and financing costs</li> </ul>                                                              |
| Ownership<br>(TCO) | <ul><li>Running costs</li><li>Infrastructure costs</li></ul>                                                  |

### The price premium for a hydrogen fuel cell bus will decrease from 125% to only 15-25%



1 Based on 12 years bus lifetime, 60,000 km annual mileage 2 Includes purchase price of more than 1 bus per daily shift as bus maximum mileage too short for full operational day 3 Theoretical value based on estimations as powertrain not in production yet in 2012

4 Includes cost for additional bus and driver per fleet of 9 buses to cover charging times at end of route for 2012

SOURCE: Study analysis

### The hydrogen fuel cell bus is the only articulated bus expected to decrease in TCO until 2030



1 Based on 12 years' bus lifetime, 60,000 km annual mileage SOURCE: Study analysis

### The cost premium for a hydrogen zero-local emission bus can be lower than 20% by 2030



#### The powertrains were assessed on three dimensions: environment, performance and total cost of ownership (TCO)

PRODUCTION-AT-SCALE SCENARIO 12 M BUS 2030



## For the powertrains based on a combustion engine, the hybrids outperform the standard combustion engines



### Only four powertrains can deliver a real decarbonisation; among those four, two are the cheapest



1 Total cost of ownership for a 12m bus including purchase, running and financing costs based on 60,000km annual mileage and 12 years bus lifetime

2 Total CO<sub>2</sub>e emissions per bus per km for different fuel types from well-to-wheel

3 Electricity cost for e-bus and water electrolysis part of hydrogen production based on renewable electricity price with a premium of EUR50/MWh over normal electricity

SOURCE: Study analysis

#### Thank you for your attention!



# **Questions?**