

HYDRAITE <u>Hydrogen Delivery Risk</u> <u>Assessment and Impurity</u> <u>Tolerance Evaluation</u>

Programme Review Days 2019 Brussels, 19-20 November 2019

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Jaana Viitakangas

VTT

https://hydraite.eu/

jaana.viitakangas@vtt.fi

WSH62991

PROJECT OVERIVEW

- **Call year: 2017**
- Project dates: 1.1.2018 31.12.2020
- % stage of implementation 01/11/2019: 61% of project months elapsed
- Total project budget: 3499867.50 €
- FCH JU max. contribution: 3499867.50 €
- **Other financial contribution: -**
- Partners: VTT, CEA, Powercell, NPL, ZSW, ZBT, SINTEF AS

Call topic: FCH-04-1-2017 Limiting the impact of contaminants originating from the hydrogen supply chain

PROJECT SUMMARY

HYDRAITE - Hydrogen Delivery Risk Assessment and Impurity Tolerance Evaluation

The objective of the project is to solve the issue of H₂ quality for transportation applications:

- Lack of representative data for ISO 14687 H2 fuel standard impurity limits Effects of contaminants, originating from the H₂ supply chain, are studied Methodology for determining the effect of contaminants in automotive PEMFC system

- Lack of European laboratory capable to perform full H₂ analysis according to ISO 14687 and EN 17124:2018 Three European H₂ laboratories will be established to offer services to the FCH community Set a network of expert laboratories able to provide qualitative analysis for new compounds with potential negative effect to
 - the FCEV

- Lack of public data on fuel composition from HRS (supply-chain derived), both from sampling nozzle and from inline monitoring Technical data on **fuel composition from HRS** from sampling campaigns
 - Inline monitoring of H₂ fuel quality

PROJECT PROGRESS/ACTIONS – Impact of contaminants

No methodology Impurity measurements conducted

- **14687 development**
 - Test protocol for determining the effect of contaminants for automotive PEMFC
 - All partners: test systems with anode gas recirculation, and online gas analysis
 - The use of ${}^{13}CO$ for contamination studies (oxidation rate monitoring with ${}^{13}CO_2$)
 - First-of-a-kind sulphur poisoning measurements with short stack and anode gas recirculation
 - Before HYDRAITE due to lack of representative data, still a large uncertainty of the acceptable and correct • *limits for number of contaminants*

Six laboratories (VTT, CEA, NPL, ZSW, ZBT and SINTEF) conducting impurity measurements for data for ISO

Month 0	12		24
Revisic	n of ISO 14687-2		ISO 14687
	New E		17124:2018

PROJECT PROGRESS/ACTIONS – European H₂ laboratories

No laboratories deployed No inter-comparisons

- - Analysis according to ISO 14687, with (partial) compliance to ISO 21087:2019
- Laboratory intercomparisons
 - Analysis of 30 HRS samples
 - Project intercomparison (project partners & external laboratory)
 - HYDRAITE intercomparison (involving sampling and analysis)

Two laboratories, NPL and ZSW, ready with the analytical methods compliant with ISO 14687-2, (third 12/2019)

PROJECT PROGRESS/ACTIONS – H₂ fuel composition on HRS

0 HRS samples No online monitoring at HRS

- 1st HRS sampling campaign conducted, results reported (2nd on 3rd year of the project)
 - Newly commissioned stations H₂ quality generally good

ISO 19880-1

Risks and Challenges

The implementation of the overall systems have been more demanding task than anticipated Mitigation measures – close co-operation between participating partners, efficient exchange of information,

good practices and lessons learned

- normative)
 - •
- Inline monitoring of H₂ fuel quality at HRS is delayed due to unlucky events at Norway

Mitigation measures – another station

Some delay in setting up the H₂ laboratories, due to delays in equipment delivery and commissioning, but also the additional requirements of ISO 21087:2019 (methods for the instrument calibrations, unexpected to be

Mitigation measures – two laboratories up and running, efficient exchange of information

Communications Activities

hydraite.eu

2nd HYDRAITE SAB workshop: a joint workshop with MetroHyVe (EMPIR) project 11th – 12th Sept 2019, VSL Delft (NL)

https://hydraite.eu/workshop-on-hydrogen-quality-and-flow-metering-for-hydrogen-fuel-cell-vehicles/

1st HYDRAITE Workshop, at ZSW in Ulm (DE), 7-8 March 2018

Dissemination Activities

2 HYDRAITE SAB workshops organized

- Invited presentations on
 - HYDROGEN (EURAMET EMPIR) WS (11/2018)
 - INSPIRE (FCH JU) WS (03/2018)

One publication currently work in progress* (others planned)

- Active participation to ISO TC 197 WG 24 and WG 27 work (06/2018, 10/2018 and 09/2019)
- WG27 pre-revision meeting held in Delft the 13th of Sept in conjunction with MetroHyVe-HYDRAITE WS \checkmark
- \checkmark work planned in 2020)
- Most HYDRAITE deliverables are public**

** Koski, P., Viitakangas, J. and Ihonen J. "Determination of fuel utilisation and recirculated gas composition in dead-ended PEMFC systems" manuscript to be submitted to International Journal of Hydrogen Energy

** cordis.europa.eu/en, and hydraite.eu/public-reports/

HYDRAITE identified as main active European project for supporting next version of the ISO 14687 and of the corresponding EN 17124 (actual start of the

EXPLOITATION PLAN/EXPECTED IMPACT

Exploitation

Exploitable HYDRAITE results are to be identified, i.e. (including, but not only) the European H₂ quality laboratories.

Further detailing of exploitation plan WiP

- EC's Support Services for Exploitation of Research Results (SSERR), and/or
- EC's Common Exploitation booster \rightarrow Consultation services

Impact

- \succ European H₂ laboratories
- > Public technical data on H₂ fuel from HRS (sampling and inline)
- > Information on 'new impurities'?
- Standardization
 - O ISO 14687 / EN 17124:2018
 - ISO 21087:2019
 - \circ ISO 19880-1 annex \rightarrow a separate standard

HYDRAITE <u>Hydrogen Delivery Risk</u> <u>Assessment and Impurity</u> <u>Tolerance Evaluation</u>

Programme Review Days 2019 Brussels, 19-20 November 2019

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Jaana Viitakangas

VTT

Coordinator: jaana.viitakangas@vtt.fi

W5H62991

