

Harmonisation protocols, electrolyser durability and AST

Developing EU harmonised accelerated stress testing (AST) protocols for water electrolyser stacks

<u>Thomas MALKOW</u> & Alberto PILENGA, European Commission, Joint Research Centre, Clean H2 JU AEMEL project findings & JRC electrolyser degradation "2 IN 1" Workshop, 29 September 2023, Brussels

> Joint Research Centre

Acknowledgements

The current drafting of "EU harmonised AST protocols for low-temperature electrolyser - A proposal for assessing performance degradation in stacks" is possible - thanks to the support by partners of EU-funded projects from academia & industry as well as the financial support of the Clean Hydrogen Joint Undertaking (Clean H₂ JU).

Scope – Proposal of AST protocols for WE stacks

- Creating commonly accepted EU-wide AST protocols for assessing relevant performance degradation in **stacks** of low-temperature water electrolyser used in real-world applications particularly in hydrogen-to-industry (H2I) processes, power-to-hydrogen (P2H₂), and other energy storage (ES) applications (grid balancing services and off-grid) to generate green hydrogen from *renewable electricity*
- ❑ Not intended to replace existing testing practices available in various industries and research establishments but to allow for an **objective comparison** of test results emanating from different projects and research efforts obtained under defined (reference) conditions and representative operation profiles

Accelerated Lifetime Testing (ALT) versus Accelerated Stress Testing (AST)

4

ALT: destructive testing of a stack by subjecting it to aggravated conditions in excess of nominal conditions of reallife use, in an attempt to reveal faults and modes of failure in a short amount of time and to assess the stack's remaining useful life mainly for commercial purposes

AST: intentionally non-destructive testing of a stack by applying high levels of stress when operated for a short time in an attempt triggering the same performance degradation mechanism(s) as presumably occur for a longer exposure of the stack when tested under normal conditions

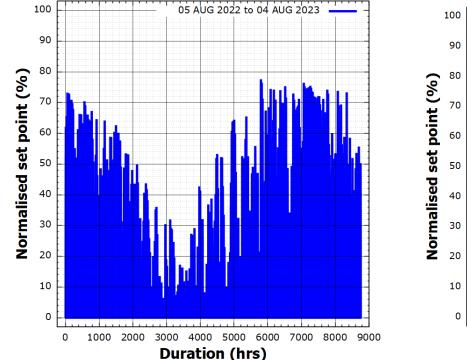
AST protocols for AWE, AEMWE & PEMWE stacks

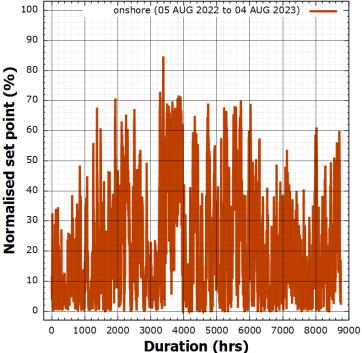
EU harmonised accelerated stress testing protocols for low-temperature water electrolyser

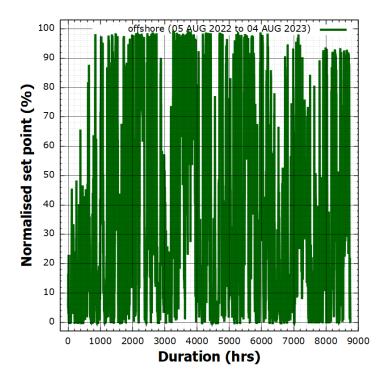
Malkow T. Pilenga

2024

Α	proposal	for	assess	ing
performance		degradation		in
water electrolyser stacks				


 Use of higher operating temperature, increased differential pressure operation, ionic water impurities and real-world renewable power profiles (PV & wind) with compressed duration inducing stress


Public stakeholder consultation:
December 2023


5 Sent on 8 Sep for expert feedback and comments by 13 Oct

RES-derived operation profiles – PV & wind power

Photovoltaic (PV)

Onshore wind

Offshore wind

KPI estimation

Evolution of stack performance degradation determined by polarisation curve and EIS measurements under reference operating conditions in periodic intervals k of fixed duration, t_k or fixed by specified number of operation profiles (simulated duty cycles) shortened in time by multiplication with compression factor, f_{compr} (0< f_{compr} <1):

- Total stack voltage deviations (absolute & relative) related to stack voltage at beginning of test (BoT), t₀, expressed in μV per hour, per m³ and per kg of hydrogen generated and in %
- Total stack power deviations (absolute) related to stack power at t₀ expressed in mW per hour, per m³ and per kg of hydrogen generated

KPI estimation

- Total deviations of ohmic and area-specific polarisation resistances (absolute & relative) related to their resistances at t₀ expressed in mW per hour and in %
- Total deviation in energy and electrical efficiencies (absolute & relative) for HHV and LHV of hydrogen related to the efficiencies at t₀ expressed in % per hour and in %

Questions

- Can the MEA test methodologies including AST protocols developed and applied in projects be readily transferred to water electrolyser (WE) stacks used in WE systems for real-world applications? If not, what has to change, why and how for a realistic and accurate assessment of stack performance/lifetime degradation?
- What are the stressors (individual and combined) likely to be relevant for WE stacks in a system context operated under realworld operating conditions (normal and abnormal) to affect the performance degradation of such stacks significantly while aiming at much shorter test durations in AST of stacks?

Questions

What test methodologies need to be included (or excluded) in AST protocols for their potential use by academia & industry alike to allow as far as possible for a system-independent assessment of stack performance/lifetime degradation?

Could todays challenges of electrolyser (non-CRM use, PGM reduction, iridium scarcity, PFAS) have an impact on assessing stack performance/lifetime degradation? If so, should test methodologies used in AST protocols (to remain relevant in the future) adequately account for these challenges?

Are stack ALT necessary/useful/beneficial for complementing stack AST regarding the three LWTE technologies?

Keep in touch

EU Science Hub

joint-research-centre.ec.europa.eu

- @EU_ScienceHub
- **f** EU Science Hub Joint Research Centre
- in) EU Science, Research and Innovation
- EU Science Hub
- @eu_science

Thomas.Malkow@ec.europa.eu

© European Union 2023

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

