

<u>Robust Advanced Materials for Metal Supported SOFC</u> (Grant Agreement n° 256768)

Julie MOUGIN CEA-LITEN Head of Hydrogen Technologies Laboratory

O. Project & Partnership description RAMSES: Robust Advanced Materials for Metal Supported SOFC

- 3 years collaborative project: 01-01-2011 to 31-12-2013
- Total budget: 4'696 k€
- Total funding: 2'140 k€

Partners	Туре
Commissariat à l'Energie Atomique et aux Energies Alternatives	R&D
SOFCpower S.p.a.	SME
Centre National de la Recherche Scientifique	R&D
Höganäs AB	Industry
Baikowski	Industry
AEA S.r.l	Industry
Stiftelsen SINTEF	R&D
Ikerlan S. Coop.	R&D
Copreci S. Coop.	Industry
National Research Council Canada	R&D

A European dimension with a good balance between academics, R&D centres and industries

www.ramses-project.org

1. Project achievements Goals and Targets

Advanced materials Performance High performance, robust, durable and cost-effective Metal Supported Cell Costs Durability Cost-effective Low operating temperature solutions

>> Increase durability through operating at low T:

In the decreased rate of thermally activated degradation mechanisms

- ✓ cell components
- ✓ interconnects
- reduced problems due to CTE mismatch
 - ✓ within the cell
 - ✓ between cell and interconnect
- simplify BoP components

✤ Increase performance:

- selection of advanced materials
- (cell/interconnects/coatings)
 - ▶ selection of adapted cell design

Reduce costs:

- ▶ low T = use of cheaper materials, mainly metallic materials
- cost-effective materials and processing routes

1. Project achievements Targets and milestones

M0			
М3		_	
M6			
M9	MS material selection	•	Technical objectives:
M12		•	Operating at 600°C with H ₂ or internal methane steam reforming (ISR)
M15	Optimised MS Gastight electrolyte	•	Planar and tubular MSCs
M18	Proof of concept at button cell level	•	Performances:
M24	Selection of the best solution for upscaling		• planar cells: ASR=0.6 Ω .cm ² with H ₂ , 0.8 Ω .cm ² with ISR
M30	Full-scale cells delivery		• tubular cells: ASR=0.8 Ω .cm ² with H ₂ , 1 Ω .cm ² with ISR
M33	Stack delivery, adapted to MSC	•	Durability:
M36	Proof of concept of short stack operation		• H_2 : ASR increase < 15 m Ω .cm ² /kh
			 ISR: ASR increase < 30 mΩ.cm²/kh

Milestones :

• Combines thermal and redox cycles

1. Project achievements Ramses approach

Approach in performing the activities:

Performance & Durability CRITERIA to follow project achievements

(progressive targets at component and cell levels)

CONTINGENCY PLAN after Go No Go decision for upscaling in M18

- 1. materials optimisations
- 2. development of the manufacturing processes
- 3. proof of concept at cell \rightarrow short stack level
- 4. investigation of the performance, degradation and some specific failure mechanisms

Testing procedures:

- Common protocol defined for single cells
- Following as much as possible
 FCtestNet and MSC manufacturers
 recommendations
- Round robin test started

Metal support development:

- Several metal powders manufactured: ferritic stainless steels
- Optimisation of the porous metal substrate manufacturing:
 - Porosity target achieved: 30-50% vol
 - Sintering conditions optimised for compatibility with subsequent cell processing
- Granulometry adaptation to fit with planar and tubular process requirements
- Suitable coating process developed for porous metal supports
- Oxidation resistance target achieved both in air and in H₂/80%H₂O:
 Oxide < 3 μm thick after 500h at 600°C

Milestone: development of MS resistant toward oxidation (M15) achieved

Anode development:

- Modified Ni-YSZ allows reaching target of ASR (0.3 Ohm.cm² at 600°C) in specific sintering conditions
- However, integration in MSC not fully successful yet due to reactivity issues ⇒ standard Ni-YSZ kept

Electrolyte development:

- 8YSZ
- improved sintering behavior compared to reference Tosoh 8YSZ:
 -100°C both in air and in reducing atmosphere
- Ionic conductivity and density similar as Tosoh

Temperature (°C)

Milestone: gastight electrolyte (M16) achieved

Cathode development:

- LSC and nickelates Ln_2NiO_4 (Ln = La, Pr, Nd) investigated
- Best results with nickelates and optimised barrier layer
- Target of ASR (0.2 Ohm.cm² at 600°C) achieved
- Thanks to optimised architecture and sintering conditions, low T sintering in low P_{O2} atmosphere possible and demonstrated
- Material stability achieved in MSC manufacturing and operating conditions

Performance criteria met at the component level

Cell development:

- Both planar and tubular cells manufactured, including RAMSES materials and/or components
- Planar cells:
 - Project target not yet achieved
- Tubular cells:
 - Successful integration of MS and electrolyte
 - Performance target reached: 1.56 Ohm.cm² at 600°C
 - 12 partial thermal cycles and 2 full thermal cycles sucessfully performed
 - 1st durability tests promising: no degradation over 500 h

Proof-of-concept done for the tubular cells in M18 according to milestone

2. Alignment to MAIP- AA3 Stationnary Power Generation & CHP

Target of MAIP – AA3	Project objective	Status at 50% of project
Achievement of principal technical and economic specifications for stationary FC competitivness / other technologies	 Increase SOFC durability: low T operation and more robust MSC architecture Cost reduction: low T, MSC concept with less expensive ceramic materials 	 First durability and thermal cycling results promising Forecast, gain to be evaluated in 2nd period
Use of multiple fuels	Targets to be reached in the project have been fixed both for H_2 and ISR.	Characterization in ISR pending
Lifetime increase to 40,000 h	low T operation and more robust MSC architecture Degradation target in agreement with such lifetime target	First durability and thermal cycling results promising, complete study during 2 nd period
Novel architecture for cell and stacks → improvements of performance, endurance, robustness, durability and cost	Innovative MSC architecture developed in the RAMSES project to achieve these goals	as above

2. Alignment to AIP 2009 – Topic 3.2 Materials development for cells, stacks and BoP

Target of AIP 2009 – Topic 3.2	Project objective	Status at 50% of project
Novel and improved materials can increase performance, reduce statistically based failures, increase lifetime and reduce cost	 Low cost porous metal as cell support Selected advanced materials, performing at low T, and advanced processes which contribute to the robustness and cost-effectiveness of the concept 	 Improved performances obtained for materials, components and tubular cells so far Planar cell still below target
Development and design of materials to improve performance of both cells and stack and BoP components. Mechanical, thermal and electro-chemical stability should be considered and lifetime and degradation issues relevant to production cost for single cells and stacks.	 Improvement in performance by material and manufacturing development at cell and stack level: WP3 dedicated to up-scaling and stack manufacturing MSC concept, selected materials and low operating temperature to increase mechanical and thermal resistance and to reduce degradation: WP4 dedicated to test 	 Id 1st thermal cycling and durability results promising

2. Alignment to AIP 2009 – Topic 3.2 Materials development for cells, stacks and BoP

Target of AIP 2009 – Topic 3.2	Project objective	Status at 50% of project
Investigation on failure mechanisms (such as Cr poisoning, redox resistance in SOFCs)	 In MSC: thin anode layer → cell less sensitive to re-oxidation ; 1 task dedicated to redox resistance investigation Selected cathode materials considered as good candidates regarding Cr poisoning: 1 task dedicated to Cr poisoning investigation 	 Redox test not yet started Tests performed: all materials however sensitive , more or less to Cr, protective coating required
New and improved material production techniques to \downarrow cost, emissions	 - Low cost processes considered for the metallic support and electrodes - Aqueous route promoted as much as possible 	Cost and LCA analysis planned in WP3 during 2 nd period
Development of inspection techniques that can be used in manufacturing of materials and cells	Efforts to develop inspection techniques that are transferrable to manufacturing lines, in particular to evaluate the electrolyte gastightness in MSCs by direct or indirect methods: development of inspection technique for electrolyte gastightness will be assessed in 1 task	Task started ahead of schedule; preselection of one technique Task to be continued during 2 nd period

3. Cross-cutting issues

Training and Education

- post-doctorates and training engineers contributing to the RAMSES project at several partners
- exchange of students during the project possible upon request by partners

• Safety, Regulations, Codes and Standards

•water-based processes, reduction of hazardous materials are considered preferentially for manufacturing for safety/environmental issues, in addition to costs reduction

- Dissemination & public awareness
 - Public website available since M4: <u>www.ramses-project.org</u>
 - Promotion of publications and conference papers, with preliminary validation of the PCC
 - •Peer review journals: J. of Power Sources, Fuel Cells, J. of the Electroch. Society, ...
 - •Conferences: EFCF, SOFC-x series, Fuel Cell Seminar,...
 - Publication to date: Lide Rodriguez, "Tubular metal supported solid oxide fuel cell resistant to high fuel utilization" given at the 10th European SOFC Forum 2012, 26 29 June 2012, Lucerne Switzerland: some RAMSES results included
 - Presentation to date: at Workshop "Materials Issues for fuel cells and hydrogen technologies", held in Grenoble on March 26th 27th 2012
 - Organization of one Workshop on MSCs planned in M36
 - •Membership in associations/technical committees (International Energy Agency Advanced Fuel Cells technical Annex XXIV, ...)

4 Enhancing cooperation and future perspectives Technology transfer and collaboration

 Main outputs taken from former FP6 projects: SOFC600 (FP6-SUSTDEV IP, 2006-2010, ref. 20089, Coordinator: ECN, Common Partners: CEA, CNRS-BX, HTc/SP, NRC): materials developments RealSOFC (FP6-SUSTDEV IP, 2004-2008, ref. 502612, Coordinator: Forschungszentrum Jülich, Common Partners: HTc/SP, CEA, SINTEF): materials development

• RAMSES also capitalize on previous EU-funded projects:

CEXICELL (FP5, ref. ENK5-CT-2002-00642, 2002-2005, Coordinator: INASMET): cost effective SOFC
 FCTESTNET (FP5 ref. ENK5-CT-2002-20657, 2003-2005): testing procedures
 FLAME-SOFC (FP6-SUSTDEV IP, 2005-2009, ref. 19875), Coordinator VDI, start-up time requirements and thermal cycle tolerance.

4 Enhancing cooperation and future perspectives Technology transfer and collaboration

- RAMSES also capitalize on previous national-funded projects:
 - French ANR Fuel Cells and Hydrogen program (program Ceramet, Icare, Ciel, Oxygene) or ADEME program (Armanasol)
 - •Italian, Norvegian, Spanish programs
- Complementarities with ongoing projects
 - •other architectures and other concept considered compared to METSOFC/METSAPP project
- Participation in the consortium of a Canadian partner (NRC)
- Industrial partners involved in the project

• RAMSES coordinator (CEA) is chairing the N.ERGHY association (50 European universities and research centres working in the field of hydrogen and fuel cells)

4 Enhancing cooperation and future perspectives Project Future Perspectives

In the future, RAMSES could interact with national, European or international projects on MSCs and/or SOFC/SOEC at reduced temperature :

- RAMSES-METSAPP joint workshop (both dealing with MSC)
- ADEL, dealing with 600°C operation in SOEC
- SOFC-Life for generic evaluation of the degradation mechanisms
- DESIGN for diagnostic tools development

• ...