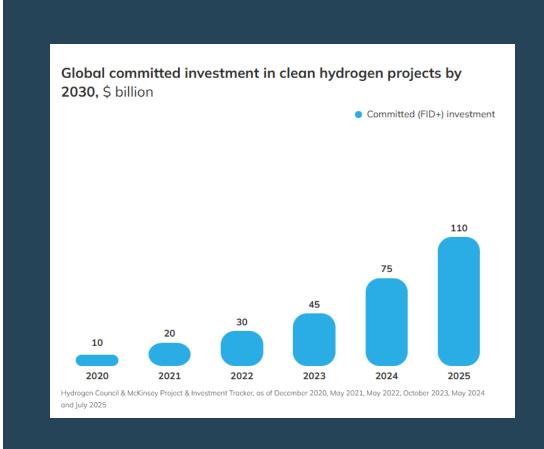


Advancing Hydrogen Technologies – 2025 Extended Edition

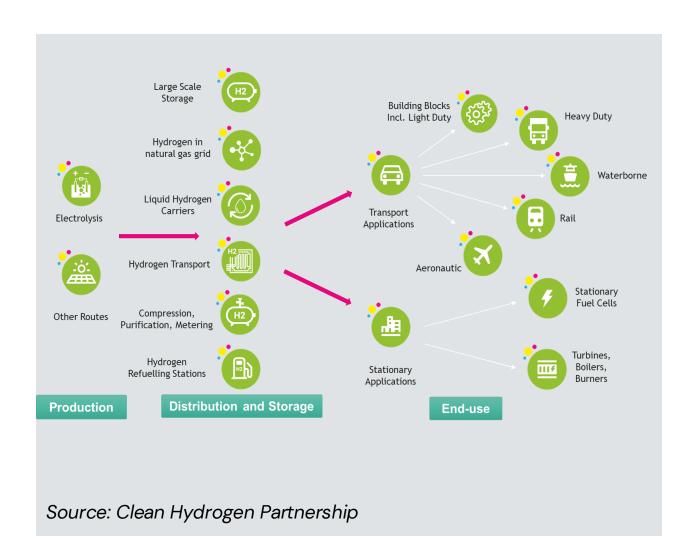
KEY RESEARCH AND INNOVATION PRIORITIES


Setting the Scene

The European Hydrogen Momentum

- Europe has become the global testing ground for the hydrogen economy
- Over **1,400 global projects**; **> 500 B€** investment pipeline (Hydrogen Council, 2025)
- Clean Hydrogen Partnership: > 400 projects, €2.8 B
 EU contribution, > 50% industry co-funding
- Yet, *implementation and innovation* must advance hand-in-hand

From targets to transformation: the role of R&I is decisive



Source: Hydrogen Council 2025

The Hydrogen Economy: From Strategy to System

- Hydrogen is no longer a single-vector solution, but a cross-sectoral system:
 - Production ↔ Infrastructure ↔ End Uses↔ Skills ↔ Society
- It bridges energy security, industrial competitiveness, and climate neutrality
- Research drives coherence and integration across these pillars and the sectors

WHAT IS MISSING / NEEDED?

- Research
- Innovation
- Start ups
- First industrial Development

Industrial Scaling Up

- Full technology readiness
- Incentives
- Bancability
- Infrastructures (e.g., HRS)

Economic Viability

Technology Competitiveness

Market Activation

- Standardization
- Policies and Regulatory framework
- Hydrogen Valleys and Regional Ecosystems
- Stimulate demand & Long term contracts

- Investments
- Public support for funding gap
- Industrial policies
- Early markets development

The Next Frontier: From R&D to Deployment

- We are entering the "industrial demonstration decade"
- The challenge: bridge the gap between innovation and investment, research and scaling up
- Keeping the support for Fundamental Research
- Requires a new Clean Hydrogen Partnership 2.0:
 - Deal with large-scale pilots, supporting industrial scaling up
 - multi-level governance (EU–MS–Regions)
 - Developing early markets: Hydrogen Valleys
 2.0 as test-beds and innovation accelerators
 - Retain value in the EU for a Competitive Europe

Role of Research in developing the Hydrogen Value Chain

Long-term vision – sectors like hydrogen or next-generation batteries take decades to mature, but today's research lays the foundation

Building the value chain – it's not just about the product, but also the entire infrastructure (production, logistics, standards, regulation).

MARKET

Hydrogen Europe Research

"HER Position Paper for Hydrogen Research"

Published in November 2024

A new, more in-depth paper on Research Priorities will be published by the end of 2025

Hydrogen Europe Research is starting a collaboration with **Mission Innovation** on the identification of Global Research Goals

Advancing Hydrogen Technologies

Key Research and Innovation Priorities

Hydrogen Production

Electrolysis: novel catalysts, PFAS-free membranes, explore hybrid & depolarized electrolysis routes

Alternative pathways: photocatalytic, thermochemical, and biomass-based routes for long-term diversification

Reversible & co-electrolysis: bidirectional operation, production of synthetic fuels

Geological hydrogen: exploration & understanding biological processes

Main Clean Hydrogen JU KPI targets for the next 5 years

Biological Production

System carbon yield: 0.021 kg H₂/ kg COD

Reactor production rate: >15 kg $H_2/m^3/d$

Waste/Biomass gasification

System carbon yield: $0.32 \text{ kg H}_2/\text{ kg C}$

Solar thermochemical production

Hydrogen production rate: 4.11 kg/m²/d

Hydrogen Storage, Transport, and Distribution Phydrogen Europe

Solid-state storage: novel hydrides, highentropy alloys, MOFs with improved kinetics

Underground storage: salt caverns, depleted fields, cushion gas optimization

Pipelines: Retrofitting, polymer-based transport

Hydrogen carriers: green ammonia, LOHCs, synthetic fuels

Compressed & liquid H₂ storage: new materials, safety, embrittlement studies

Main Clean Hydrogen JU KPI targets for the next 10 years

Hydrogen carriers

Ammonia Dehydrogenation efficiency: 0.83 kg H2 produced/ kg H2 input

6.8 kg NH3 input / kg H2 produced

Hydrogen liquefaction

H2 liquefaction energy intensity: 7 kWh/kg

Hydrogen Applications - Transport

Fuel Cells: Next-gen concepts, hybrid, novel cooling, passive-feed designs

Aviation: Storage & cooling technologies for inflight use, minimise boil-off/evaporation, develop compact, energy-dense fuel cells

Maritime Transport: Safe hydrogen storage, hydrogen leak detection, containment systems, emergency response protocols, standardised safety and regulatory frameworks for shipping

Fuel Cell Building
Blocks

FC module availability: 99%

FC stack durability: 30,000h

Fuel Cells for planes

FC module durability: 45,000h

FC system efficiency: 62%

Main Clean Hydrogen JU KPI targets for the next 10 years

PEM Fuel Cells for Ships

Hydrogen bunkering rate: 10-ton H2 /h

Maritime FCS lifetime: 120'000h

SOFC KPIs for ships

H2 derived fuel bunkering rate: 100 ton H2 /h equivalent

Hydrogen Applications - Industry & energy

Metal production: hydrogen plasma, water vapour content and its effect on system performance

Combustion: flame stabilisation mechanisms, limited accuracy of kinetic models, insufficient studies on shock waves, explosion dynamics and backflash risks

<u>Ceramics production</u>: kiln & burner adjustments, metal depletion, acidification, foam formation in melt

Energy Systems: Flexible combined heat & power (CHP) units, hydrogen turbines and hybrid systems, integration of hydrogen into power-togas infrastructures

Main Clean Hydrogen JU KPI targets for the next 10 years

Turbines (DLE combustion)

Minimum ramp rate: 25 % load / min

Max. efficiency reduction in H2 operation: 1@100% H2/% points

Transversal Activities

<u>Sustainability</u>: replacement of PFAS, recycling, development of life cycle inventories

<u>Sustainable manufacturing</u>: additive manufacturing, reduced CRMs

Al Applications: Develop routes for accelerated implementation with diagnostic, prognostic and control tools

Modelling tools: Modelling and characterisation of materials behaviour, developing more comprehensive models and scenario analysis tools

Education & training: modular programs, workforce upskilling

Research and Technology Infrastructures: technologytype-focused infrastructure planning, improved digitalisation and AI-driven tools

Main Clean Hydrogen JU KPI targets for the next 5 years

Recycling

Number of eco-design guidelines developed for hydrogen and/or fuel cell technologies: 10

Replacement of PFAS materials (e.g. in membrane) in PEMbased stacks: TRL 6

Education and Public Awareness

Trained pupils in primary and secondary education: 15,000

Trained professionals: 100.000

ADVANCED MATERIALS & MEMBRANES

Research Targets (2030-2035)

Ceramic membranes – structural stability

- Multi-layer sintering without defects control of nano/micro/macro porosity
- Multi-phase composites & high-entropy oxides
- Use of AI and multi-scale modelling for materials / process design
- Validation for cyclic operation under high temperature & mechanical stress

Objective: +40% durability / -30% cost reduction

Polymer-based transport components

- European qualification standards for polymeric materials under high pressure.
- Predictive models for lifetime vs. permeation & decompression damage.
- Need for a European performance database of certified materials.

Objective: Standardised qualification for H₂ pipelines at TRL 7

Structurally Stable
Ceramic Membranes

Position Paper

Diletta Giuntini Mariya E. Ivanova Maja Rücker

Hydrogen Europe Research

Compatibility of polymer-based materials

for the hydrogen transport infrastructure

Omnes Benoft Vanesa Gil Girardin Gouenou Lidia Martinez-Izquier Matteo Minelli Thijs Peters Sebastian Seidel

ALTERNATIVE HYDROGEN PRODUCTION PATHWAYS

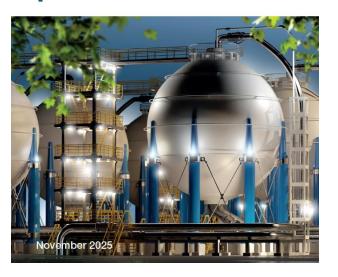
Priority Research Areas — Complementary to Electrolysis

Depolarized Electrolysis (SO₂ / N-based routes)

- Voltage target < 1.0 V @ 500 mA/cm² with >50% H₂SO₄ concentration
- Dedicated stack design for SDE / nitrogen electrolysis → never realised yet

Biomass & thermochemical cycles

- Two-stage anaerobic digestion routes for H₂ production
- Pressurized pyrolysis → local/decentralised production
- Co-production of chemicals → OPEX reduction


Objective: Requires **feedstock screening + integrated LCA models.**

Position Paper

Alternative hydrogen production processes

Merit Bodner Lukas Roossler Escudero Francesca Valetti Justyna Luczak Alejandro Anson Casaos Jaroslaw Milewski Gianluca Greco Victoria Laura Barrio Eleonora Cordioli Francesco Zimbardi Alicia Bayon Andrea Fasolini

ADVANCED SAFETY & REGULATORY IMPACT

RCS – Regulations, Codes & Standards

IGF Code for maritime — hydrogen adaptation

- Complex ventilation strategies needed.
- Below-deck integration & enclosure safety.
- Jet fires & bunkering protocols → requires CFD simulation + physical testing.

Self-venting composite tanks (TPRD-less)

Target: TRL 4−6 (Type IV) → scale-up to TRL 7 industrial **Requires**: permeability control + industrial guidelines

Development of IGF Code for hydrogen

Providing comprehensive scientifically based safety recommendations for maritime applications

Position Paper

Sergii Kashkarov Vladimir Molkov Dmitriy Makarov Viviana Cigolotti Giovanni Di Ilio

Position Paper

Explosion free in any fire self-venting (TPRD-less) composite tanks:

fundamentals and manufacturing guidance

Sergii Kashkarov Vladimir Molkov Dmitriy Makarov

ADVANCED MANUFACTURING

Policy Perspective

Non-Conventional and **Advanced Sustainable** Manufacturing **Technologies for Fuel** and Electrolytic Cells

From Detection to Substitution:

Scientific Challenges of PFAS in Hydrogen

Technologies

Position Paper

Research and Technology Infrastructures

Non-Conventional Manufacturing Routes (additive manufacturing, roll-to-roll, hybrid processes)

- Material waste reduction >30%
- Digitalisation of supply chain enabled by Al
- Real-time quality control via automated data-driven systems

Policy intervention required — incentives & ESG compliance tools

Research & Technology Infrastructures (RTIs)

Need to transition from lab → mid-scale piloting Multi-level model:

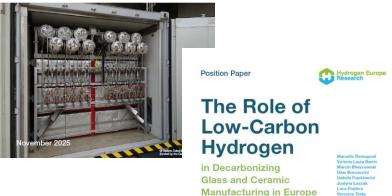
- 1. Standardised components →
- 2. Custom systems \rightarrow
- Industrial demonstrators

RTIs recognised as Europe's fifth freedom as the free movement of knowledge, data, researchers and research infrastructures across Europe — enabling research to become a true strategic capability

INDUSTRIAL APPLICATIONS & USE CASES

Low-pressure H₂ storage

- Metal hydrides / High Entropy Alloys / MOFs


 → densities up to 150 kg/m³.
- Key issues: thermal management, scale-up, recycling.
- Lifecycle assessment & circularity are mandatory.

Glass and ceramics industries

 Early industrial trials already ongoing → H₂ as fuel in industrial furnaces.

Key challenges: product quality & safety **Opportunity**: brand positioning & green premium

Research is not the beginning of the chain Research is the foundation of the entire chain

Hydrogen will grow only through **integration**: research links technologies, sectors, policies and people

Europe is entering the **industrial demonstration decade** — but **demonstration without research becomes imitation**.

If Europe wants leadership, it must **protect research** as its strategic asset.

Today's research = tomorrow's hydrogen system

THANK YOU!

Avenue Marnix 23 1000 Brussels, Belgium

Secretariat@hydrogeneuroperesearch.eu

https://hydrogeneuroperesearch.eu/