
Hydrogen Research & Innovation Days24-25 November 2025

Hydrogen Research & Innovation Days 24-25 November 2025

HYSCALE – ECONOMIC GREEN
HYDROGEN AT SCALE WITH CRM & PFAS
FREE AEM ELECTROLYSERS

From Targets to Technology – Why HYScale Matters

EU Hydrogen Strategy

- 2030 Target: 40 GW of electrolyser installations planned.
- Contribution:
 Provides scalable,
 cost-effective green
 hydrogen technology
 that directly supports
 achieving this

deployment.

HYScale

TRL Advancement

- System
 Demonstration: 100
 kW AEM stack
 integrated into an electrolyser
 demonstrator.
- TRL Progression:

 Technology maturity increased from TRL 3 to TRL 5 in an industrially relevant environment.

Scalable Building Block

- Scalable Architecture:
 The 100 kW demonstrator is designed as a modular building block for MW-scale electrolyser systems.
- Path to Higher TRL: Supports progression toward TRL 6 and beyond through straightforward scaling and system integration.

Tackling Key Barriers

- Cost Reduction: Tackles high CAPEX barriers.
- Material Independence:
 Reduces reliance on CRM
- High-Performance Operation:
 Enables stable 2 A/cm²
 operation with low degradation.
- Low-KOH Compatibility:

 Supports efficient performance
 in highly diluted KOH
 electrolyte.

A Distinctive, CRM-Free, PFAS-Free AEM Technology

HYScale represents a breakthrough in sustainable electrolyser design, combining regulatory compliance with technical excellence through innovative material choices and system architecture.

AionFLX™ Membranes

- PFAS-Free Design: Fluorine-free with high hydroxide conductivity and strong gas separation.
- Durable: Mechanically, chemically, and thermally stable.
- Scalable & Green: Cost-effective synthesis using recycled, ecofriendly materials.

CRM-Free Catalysts

- CRM-Free Catalysis: Optimised catalysts and porous transport layers remove critical raw material dependence.
- Improved Transport: Enhanced mass-transport efficiency through tailored catalyst–PTL pairing.

Full Value Chain

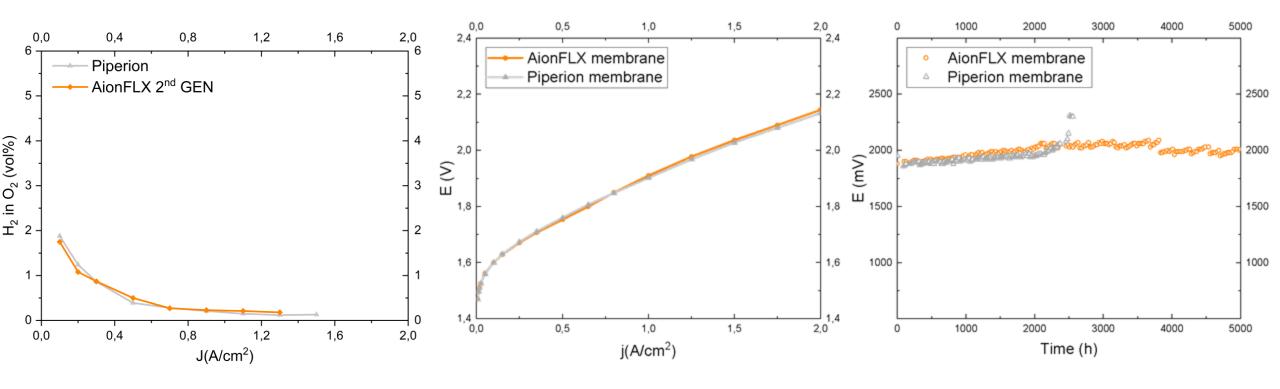
- Full Value-Chain Integration:
 From membranes, ionomers, catalysts, and PTLs to stack design, system integration, and LCA/TEA.
- Aligned with Targets: Ensures technical progress matches cost and sustainability requirements.

From Lab Scale to 900 cm² – Upscaling AionFLX Membranes & Ionomers

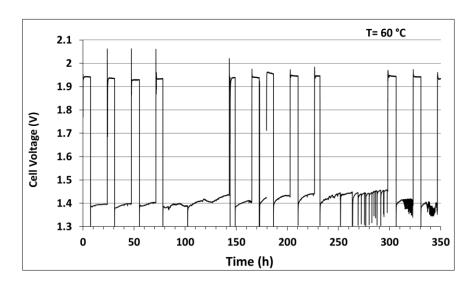
Polymer & Ionomer Synthesis Scale-Up

- Ionomer Synthesis: Scaled from ~5 g to 75 g and 150 g batches with IEC ~1.7 meq/g.
- Polymer Synthesis: Increased scale from 15 g to 300 g while maintaining IEC stability (1.06–1.15 meq/g).
- A 300 g batch yields ~70 membranes (70 μm thick), sufficient for a 100 kW stack.

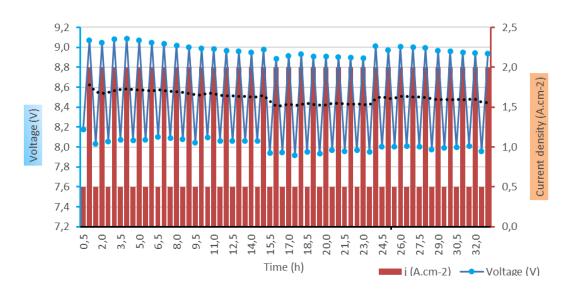
Large-Area Membrane Casting


- Increased casting width from 5 cm to 20 cm and 30 cm.
- Large-Area Membranes:
 Achieved 30 × 30 cm (900 cm²) AionFLX membranes.
- Performance Maintained:
 Scaling preserved membrane performance.

High-Performance, Durable and Safe Cells



All results: with CRM-Free CENmat catalysts in 0.1M KOH and at 50°C. AionFLX equipped cell : ca. 20μV/h degradation, Piperion equipped cell: ca. 170μV/h degradation



Scaling Up – Large-Area Cells and Short-Stack Operation

Large-Area Base Cell

- ~400 cm² Base Cell Validation: Demonstrated performance comparable to small cells at low current density and improved behavior at high current density.
- o **High Efficiency:** Faradaic efficiency >98%.
- Stable Operation: ~110 h continuous run plus 350 h duty-cycle testing between OCV and 1 A/cm².

Demonstrated Stack Performance

- 120 h Stability: Chronopotentiometry at 1 A/cm² shows stable operation.
- Duty-Cycle Robustness: 0.5–2 A/cm² cycling (~30 cycles) maintains consistent performance.
- Idle Recovery: Essentially full reversibility after a 20-day idle period.

Designing the 100 kW Stack and Flexible Demonstrator

Stack Design Foundation

• Performance
Targets: 2 A/cm² at
1.85–2.0 V per cell
and 4 W/cm² power

density.

- Cell Format:
 Large-area 400 cm²
 cells used as the core unit.
- Stack Size: ~70 cells required to achieve ~100 kW at 2 A/cm² and 2 V per cell.

Mechanical Architecture

Robust Hardware:

 Integrated
 compression
 system with
 corrosion-resistant
 components.

 Cost-Effective Concept: Flowfield-free design simplifies manufacturing and lowers costs.

System Integration

Data-Driven Scale-Up

- Flexible
 Demonstrator:
 100 kW stack
 integrated into a
- integrated into a system supporting dry/wet cathode and equal/differential pressure operation.
- Operational Testing: Enables evaluation of multiple operating strategies.
- Economic
 Assessment:
 Allows comparison of CAPEX/OPEX trade-offs under varying conditions.

- Data Foundation:

 Primary data from the prototype to build LCI and techno-economic models.
- Scalable
 Modelling: Models
 will be extrapolated
 to MW-scale
 systems.
- Robust
 Methodology:
 Ensures reliable
 and validated
 scaling from
 prototype to large scale deployment.

HYScale – Delivering the Next Generation of AEM Electrolysers

Breakthrough Technology Performance

- Sustainability: PFAS-/Fluorine-/CRM-Free
- High Performance: Achieves 2
 A/cm² at ~2.0 V per cell.
- Low Degradation: <5 μV/h demonstrated at single-cell level.
- Large-Area Efficiency: >98% faradaic efficiency in large-area cells.
- Low-KOH Operation: Stable and efficient performance due to highly diluted KOH cabablity.

Industrial-Scale Validation

- Upscaled Materials:

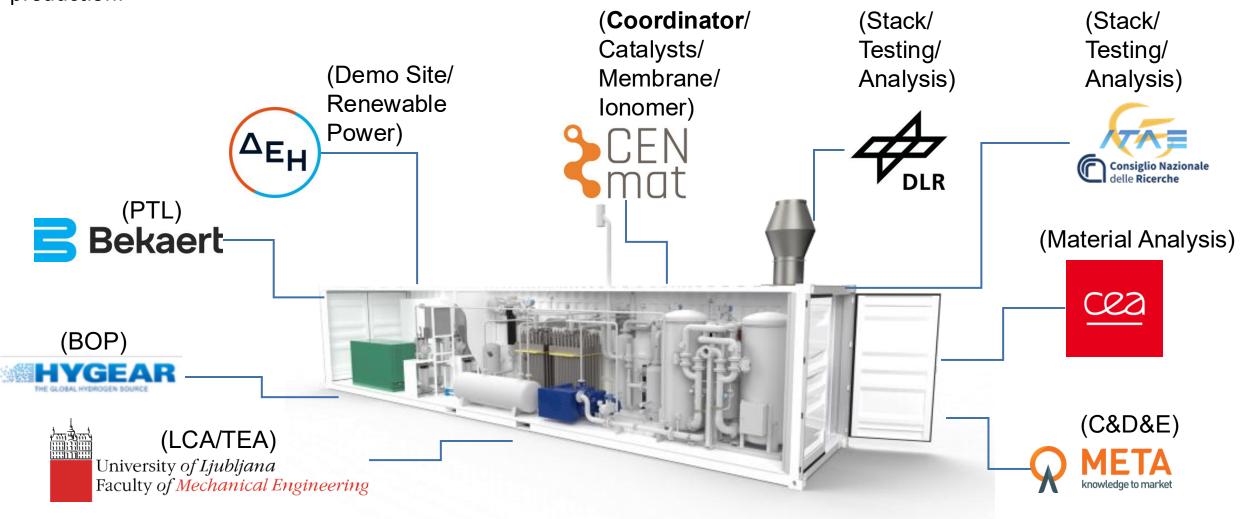
 AionFLX membranes and ionomers produced at batch and area scales suitable for a 100 kW stack.
- Validated Across Scales:
 Proven performance from 4
 cm² cells to 400 cm² cells and
 a 4-cell short stack.
- Stack Design Ready:
 Compact 100 kW stack
 design defined for integration into a flexible demonstrator.

Competitive Economics & Sustainability

- Low Impact: Preliminary LCA shows strong potential for a low carbon footprint.
- Cost Target: TEA points to CAPEX around 400 €/kW.
- Material & Design Benefits:
 CRM-free materials and simplified architecture support these gains.
- Strategic Alignment: Direct contribution to EU hydrogen and climate objectives.

Clear Path to Market

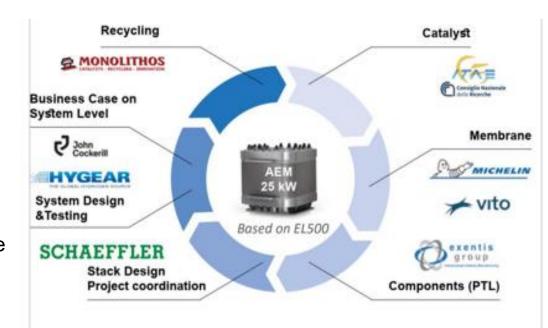
- Clear Roadmaps:


 Exploitation plans and KER pathways defined for membranes, CCS, short stack, and LCA/TEA data.
- Targeted Deployment:
 Clear target markets and
 time-to-market identified.
- Strong Engagement:
 Supported by active communication, industrial involvement, and a growing ecosystem.

Call to Action

We invite policymakers, industry and investors to collaborate on piloting and scaling HYScale technology from the 100 kW demonstrator to MW-scale plants. Together, we can accelerate the transition to affordable, sustainable green hydrogen production.

AEM system development:



Project HERAQCLES delivers:

- Innovative components developed for automated production processes
- Latest polymer technology integrated into durable membrane
- Novel design-for-manufacturing architecture and stack design
- Dedicated 25kW AEM stack capable of achieving 50 bar pressure
- Efficient Balance-of-Plant system including separate cooling loop

Target: 48 kWh/kg

@ 1A/cm²

Focus is on developing a cost-effective stack architecture combined with advanced automated sequential manufacturing processes delivering a qualified 25 kW stack with quantifiable high performance, sufficient durability at low capital costs.