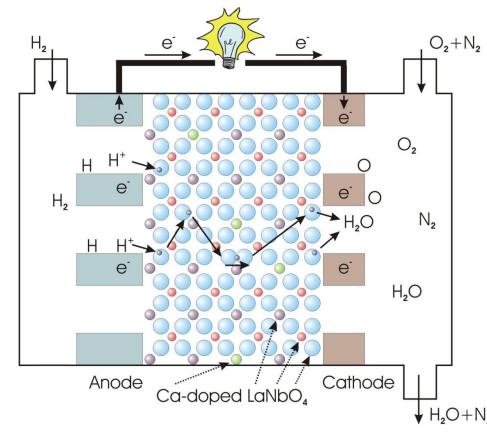


Efficient and robust fuel cell with novel ceramic proton conducting electrolyte (EFFIPRO)

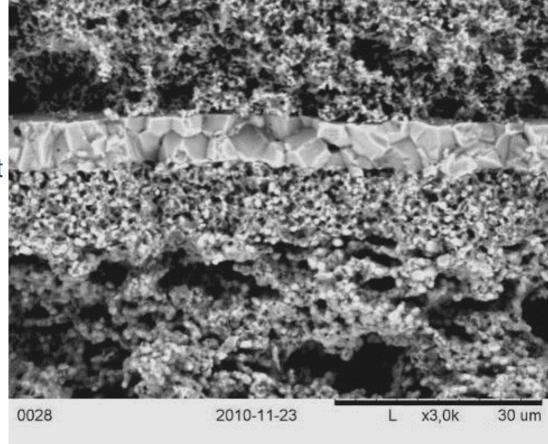
FP7-Energy-NMP-2008-1 *227560*

Truls Norby
University of Oslo


1. Project achievements

EFFIPRO partnership

Beneficiary Number	Beneficiary name	Beneficiary short name	Country
1 (coord.)	University of Oslo	UiO	Norway
2	Centre National de la Recherche Scientifique; Institut des Matériaux Jean Rouxel, IMN	CNRS	France
3	Inst. Chemical Technology, U.P. Valencia/ CSIC	CSIC-ITQ	Spain
4	SINTEF	SINTEF	Norway
5	Forschungszentrum Jülich	JÜLICH	Germany
7	Fuel Cells and Solid State Chemistry Department, Risø National Laboratory for Sustainable Energy, Technical University of Denmark	RISØ-DTU	Denmark
8	Ceramic Powder Technology (CerPoTech)	CERPOTECH	Norway


PCFC

- Proton conducting SOFC (PC-SOFC)
- Proton Ceramic Fuel Cell (PCFC)
- Proton conduction by hydration of acceptor-doped oxides
- 100% fuel utilisation with H₂ fuel
- Ba(Ce,Zr,Y)O₃ state of the art perovskites; GB resistance, high sintering temperature, too basic
- Ba-free alternatives?
- LaNbO₄? "La₆WO₁₂"?

EFFIPRO approach

- Ca-doped LaNbO₄
- Chemical stability
- Proton conductivity
- Materials production & cost
- Thin films
- New support
- New anode
- New cathode
- PCFC electrode kinetics

EFFIPRO targets

Property or conditions	1 st generation;	2 nd generation;	Long term future	
	Project midterm	Project final	developments	
Temp. of operation	800 °C	700 °C	5-600 °C	
Atmospheres	Moist H ₂ /air	Moist H ₂ /moist air	Dry H ₂ /air	
Fuel utilization	Small	> 90 %	> 95 %	
Electrolyte $\sigma_{H+,DC}$, S/cm	0.001	0.0015	0.002	
Electrolyte thickness; ASR	$5 \mu \text{m}$; $0.5 \Omega \text{cm}^2$	$3 \mu m; 0.2 \Omega cm^2$	$2 \mu \text{m} 0.1 \Omega \text{cm}^2$	
σ _{anode} ; σ _{cathode} , min., S/cm,	100; 50	200; 75	300; 100	
Electrode kinetics, each	$0.5 \Omega\mathrm{cm}^2$	$0.2 \Omega \mathrm{cm}^2$	$0.1 \ \Omega \text{cm}^2 \ (0.1 \ \text{V overp.})$	
Thermochemical and – No reactions between electrolyte, electrodes, CO ₂ . Structur mechanical stability thermally cycleable without electrolyte cracks.				

EFFIPRO midterm

Achievements:

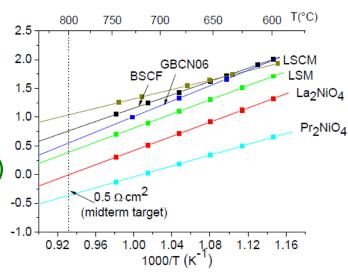
- Ni-LaNbO₄ cermet anode OK
- Thin films 5 µm on suitable anodes OK

Learning:

- LaNbO₄ conductivity could not be increased
- "Line" compounds like LaNbO₄ challenging

New proton conductor fulfils requirements:

- "La₆WO₁₂" = La_{-5.6}WO_{-11.4} = ?
- Stable. Conductivity OK for final target
- Electrode development ongoing


Progress towards SoA

PCFCs offer

- 100% FU
- thus higher overall efficiency
- simpler BoP

EFFIPRO: Ba-free materials & materials combinations

- Materials and production technologies for LaNbO₄ class demonstrated, but electrolyte and cathode performances not to target.
- Fulfilment of targets with "La₆WO₁₂" (LWO) on track
- EFFIPRO approach 100% FU competitive in 2020

Log area-specific cathode resistance on LWO

2. Alignment to MAIP/AIP

- Correlation with Application Areas
 - PCFC technology generically applies to
 - Hydrogen more than fossil fuels
 - Both use and production; fuel cells, electrolysers
 - Small to large; mobile, heavy transport, stationary

Transport & Refuelling Infrastructure
Hydrogen Production & Distribution
Stationary Power Generation & Combined Heat & Power

» Long term development to market

Alignment to MAIP/AIP

- Detailed activities vs MAIP/AIP targets
 - EFFIPRO PCFC technology can have a potential impact in 2020 onwards, i.e. perspectives longer than FCH-JU
 - It will where applicable improve efficiency of SOFCs and PEMFCs running on H₂ with estimated 10%

Alignment to MAIP/AIP

- Gaps and bottlenecks in MAIP/AIP
 - None, from a PCFC perspective for short term market impact
- For long term developments of H₂ energy:
 - Elevated temperature H⁺ conducting fuel cells (PCFC, SAFC, HT-PEMFC) are ultimate solutions over O²⁻ conducting SOFCs and H₃O⁺ conducting PEMFCs
 - More focus on long term development of such technologies may be considered

4. Cross-cutting issues

- Training and education in EFFIPRO
 - 4 post-docs and 1 PhD
 - 2 schools in defects, transport etc. for PCFCs
- Safety, regulations, codes, standards
 - NA
- Dissemination and public awareness
 - Scientific publication
 - Conferences (attendance, organisation)
 - PCFCs and project highlighted in Chemistry Year
 2011 and Univ. Oslo 200 Anniversary events

Enhancing cooperation and future perspectives

- Technology transfer and collaboration
 - Integration with Norwegian PCFC projects triples effort
 - Patent applications considered by partners
 - Interaction with Norwegian SME actors
 - Inside consortium: CerPoTech AS
 - Outside consortium: Protia AS
 - User Forum Group brings feedback from major industry

5. Enhancing cooperation and future perspectives

Project future perspectives

- Proposed future research approach
 - EFFIPRO is long term / high risk in 7FWP/Energy
 - Follow-up research proposed in 7FWP/Energy and FCH JU.
- International collaboration and future opportunities
 - EU is the academic locomotive for PCFC
 - US and Japan offer important PCFC technology
 - PCFC and HT-PEMFC opportunities for EU leadership and SMEs & industry
 - PCFC and HT-PEMFC should get focus in future FCH JU.