Construction of Improved HT-PEM MEAs and Stacks for Long Term Stable Modular CHP Units

CISTEM

FCH JU GA No.: 325262

CISTEM

Peter Wagner NEXT ENERGY www.project-cistem.eu

PROJECT OVERVIEW

- Call topic: SP1-JTI-FCH.2012.3.5
- Application Area: Stationary CHP systems
- 1st June 2013 31st May 2015
- Total budget: 6,097,180 €
- FCH JU contribution: 3,989,723 €
- Vision: Development of a new HT-PEMFC based CHP technology with high efficiency and long lifetime
- Stage of implementation: 80 %

Programme objective/target	Project objective/target	Project achievements to- date	Expected final achievement		
MAIP					
Operational CHP unit between 5 and 50 kW power	Modular CHP design with stack modules, consisting of two 4 kW stacks and one reformer in a H-i-L environment	Determination of design criteria Accomplishment of short stack testing Full stack set up and tests in progress Fuel processor completed	100%		
Lifetime > 20,000 h	Extended lifetime improvement of up to 40,000 h	Long term testing through constant load and in ASTs show promising results.	20,000 h 100% 40,000 h 75%		

Programme objective/target	Project objective/ target	Project achievements to- date	Expected final achievement			
MAIP						
Electrical Efficiency > 40%	Increase of electrical efficiency to 45% with an overall efficiency of 90%.	 42% gross electrical efficiency calculated through better heat recovery Further improvement through 30% O₂ enriched cathode air is expected in final operational testing (already shown on single cell level). Improvement through operational strategy 	100% for targeting above 40% 75% for targeting 45% efficiency			

Programme objective/target	Project objective/target	Project achievements to- date	Expected final achievement			
AIP						
Increased knowledge on degradation and failure mechanisms	MEA and BPP degradation	Accelerated stress testing on MEAs to access lifetime predictions	100 %			
PoC prototype modular CHP system based on HT-PEM technology	Realization of one module, consisting of two 4 kW HT- PEM stacks and one reformer, in a H-i-L- environment	Short stack has been designed. BoP component specifications finished. BoP setup has started.	100 %			

Components

- MEA durability improvement through thermal treatment
- Degradation rate (DR) < $4 \mu V/h$
- Voltage improvement:
 - 750 mV at 0.2 A/cm² and 670 mV at 0.5 A/cm²
- Extended lifetime (10% V-loss):

- >40,000 h (lowest DR achieved: -0.9 μ V/h)

New catalyst support based on SiCTiC

Balance of Plant (BoP)

• Short and full stacks

Short stack with degradation rate of -5.4 μ V/h (@ 0.3 A/cm², after 1,200 h, H₂/air)

 Completion of new reformer

System

CHP evaluation system set-up in progress
 Modelling

• Mathematical 3D model: 100 cell, stationary

Cell averaged overvoltage [V] in FC stack at current density of 0.3 A/cm²

Next steps

 Finishing of set-up of CHP evaluation unit

- Completion of FC stack model
 3D dynamical model of HT-PEM FC stack
- Start of operational tests

RISKS AND MITIGATION

- > 45 % electrical efficiency is critical to achieve
 - 42% gross electrical efficiency calculated through better heat recovery in system design
- Remedial action:
 - Further improvement through O₂ enriched cathode air is expected in final operational testing (shown on single cell level)
 - Improvement through operational strategy

SYNERGIES WITH OTHER PROJECTS AND INITIATIVES

- Co-funding at national level:
 - UCTP has received a grant provided by the Czech Ministry of Education, Youth and Sports (No. 171/2007 Sb. to the ACT No. 130/2002 Coll)
- Interactions with EU-level projects (past & present)
 - DEMMEA (GA No. 245156)
 - DEMSTACK (GA No. 325368)
- Planned interactions with other FCH JU/EU projects:
 - CleargenDemo
 - Demcopem
 - POWER-UP

HORIZONTAL ACTIVITIES

- Number of Bachelor- and Master-Thesis: 4
- Expert-Workshop will be organized as sideevent of the Hydrogen Days 2016 in Prague.
- General public awareness:
 - Hzwei-Magazine: 01-2014 and 04-2015

OWIDALLT AM D7 KDAETWED

GIGGEL INVESTIERT IN BARLEBEN

EU-PROJEKT KOMBINIERT ENTWICKLUNGEN

CISTEM - Optimierter Einsatz von HT-PEM-Reennstoffzellen in KWK-Einheiter

DISSEMINATION ACTIVITIES

Paper & Proceedings:17*

Poster:5*

• Presentations: 30* at conferences like EFCF, EFC, ECS, CARISMA, CIMTEC, etc.

Fair-Attendance: Hannover Fair
 Expocomfort Milano

EXPLOITATION PLAN/EXPECTED IMPACT

- Main result beyond international SoA:
 - Low degradation rates & improvement of durablility
- Achievements that allows progressing one step further to cost reductions:
 - Pt loading decreased in the MEA
 - Reduction of Pt/C waste during mass production
 - Optimization of the production capacity
- Main achievements with respect to TRL increase:
 - Implementation of quality control and specifications (The standard deviation on a single cell and batch to batch variation is reduced down to 1 %)
- Exploitation:
 - Modular sizing of CHP units as market approach
 - Certification process of fuel processor is planned for 2016 with following commercialization

Thank you very much for your attention!

FCH-JU funding is widely appreciated. (Grant agreement no: 325262)