

Ian Williamson AFC Energy www.project-power-up.eu

PROJECT OVERVIEW

- <u>Project title:</u> POWER-UP Demonstration of 500kWe alkaline fuel cell system with heat capture
- <u>Call:</u> SP1-JTI-FCH.2012.3.7: Field demonstration of large-scale stationary power and CHP fuel cell systems
- Start and end date: 1 April 2013 30 June 2017
- <u>Total budget:</u> €11,552,448; FCH JU contribution: €6,137,565; self-funded costs: €5,414,883
- <u>Consortium</u>

- <u>Overall purpose of project:</u> POWER-UP will be the world's first large scale demonstration of an alkaline fuel cell system. A 500 kWe alkaline fuel cell system will be built, then installed and operated at Air Products' industrial gas plant in Stade, Germany.
- <u>Stage of implementation:</u> 39% of project duration passed

PROJECT TARGETS AND ACHIEVEMENTS

Status before project	AIP target	Project Target	Current status/ achievements	Expected final achievement
Only R&D supply chain / sourcing strategy in place	Develop the potential for European businesses to realise 'product' supply chain opportunities	Almost all component parts of the AFC system are now sourced from within the EU	EU supply chain has already been initiated as a result of POWER-UP funding	Sophisticated and flexible almost wholly- European supply chain
Desired stringent control of 'scale-up' costs	Identification of barriers or risks to full implementation	Flexible, validated cost model tool	major risk analysis has already been undertaken	cost model shows that viable costs can be achieved

PROJECT TARGETS AND ACHIEVEMENTS

Status before project	AIP target	Project Target	Current status/ achievements	Expected final achievement
Mainly UK- wide marketing and publicity	Public awareness: strong dissemination efforts; potential customers	Utilise European Hydrogen Association's network and presence at industry fairs	Eurochlor, posters & website, dissemination plan complete	established Strategic Advisory Board, scientific papers for publication
n/a	commitment towards the running of the system after project end	fuel cell system will continue to function in situ	n/a	system continues to be used to generate electricity

PROJECT TARGETS AND ACHIEVEMENTS

3D model of the KORE fuel cell module

Assembly of the first AFC KORE module for Stade

Stack assembly robot

RISKS AND MITIGATION

Target	Proof of feasibility of integrated fuel cell units by demonstrating sufficient duration.
Bottlenecks and risks:	 due to output from HAZOP it was necessary to relocate the fuel cell systems decision caused a delay to the installation of the first system of at least three months installation of the second system is not expected to be affected and durability targets are still on schedule to be met
Revision of targets:	No
Suggested nature of revision:	 Consortium expects to meet target and considerable progress has been achieved uncertainty has been addressed in the risk management programme, and appropriate tests have been undertaken

SYNERGIES WITH OTHER PROJECTS AND INITIATIVES

DESCRIPTION OF COMPLEMENTARITY AND JOINT ACTIVITIES

- Project LASER-CELL (278674); 01/11/2011 31/10/14
- completion will enable the final phase of the POWER-UP system to exploit the advances of project LASER-CELL
- including: novel plate design, development of substrate material and the manufacturing process used to make the substrates
- Project ALKAMMONIA (325343); 01/05/2013 30/04/16
- CE-Certification in POWER-UP following experience gained from undertaking similar work in project ALKAMMONIA
- POWER-UP will benefit from ALKAMMONIA's cartridge stack design and adaption, as well as further development of the systems controller

-ASER-CELI ALKAMMONIA

HORIZONTAL ACTIVITIES

Training and education

- face-to-face interactions with the research community at events
- project partners host several Masters and PhD students over the duration of the projects
- students examine specific parts of the Life Cycle Analysis, the costs and the risks analysis of the materials and systems
- event in cooperation with ALKAMMONIA and POWER-UP presenting fuel cell science to high-school students taken place to explain employment opportunities in the industry

DISSEMINATION ACTIVITIES

Madrid, 1-3 April 2014

13-17 April 2014

Hamburg, 20/21 May 2015

Stuttgart, 12-14 October 2015

EXPLOITATION PLAN/EXPECTED IMPACT

- work in project POWER-UP will be the final step before market deployment
- partners will have demonstrated the ability of the POWER-UP system to deliver the technical performance and economic viability that commercial end-users demand
- estimate the cost vs volume relationship for AFC's fuel cell
- developed robots will be capable of assembling/disassembling stacks and serve as the basis for future automation systems to meet the increased demand for stacks
- initial anticipated market for AFC's fuel cells is within the chlor-alkali industry (where there exists a symbiosis with alkaline fuel cells due to hydrogen as a by-product)

Project LASER-CELL workshop

"Lab to manufacturing – an iterative process": 12 Nov, 11:30am FCH JU office, 4th floor L'atrium blanche, Avenue de la Toison d'Or 56-60