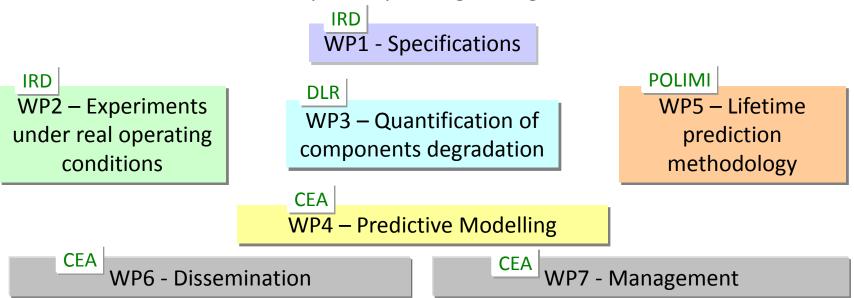


Premium Act

Premium Act/1

PREdictive Modelling for Innovative Unit Management and ACcelerated Testing procedures of PEFC

(256776)


Sylvie Escribano CEA

- Duration: from 03/2011 to 02/2014
- Total budget: 5 370 190 € FCH contribution: 2 513 251 €

Improvement of stationary PEFC systems durability (40000h required!)

→ A reliable method to predict system lifetime, benchmark components and improve operating strategies

Premium Act

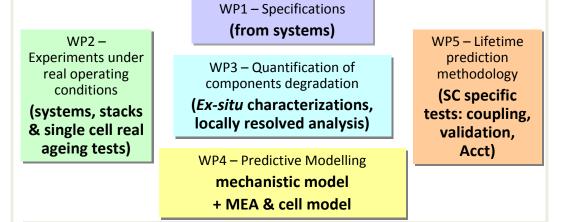
1. Project objectives & Approach

• Expected achievements

- → Operating strategies, enhancing lifetime of given MEAs in given stack and system
- Design of a lifetime prediction methodology based on coupled modelling and composite accelerated tests experiments (ranking of selected MEAs in real conditions and then following accelerated tests)

<u>Technical aspects</u>

Two fuel cell stack technologies for stationary power applications:

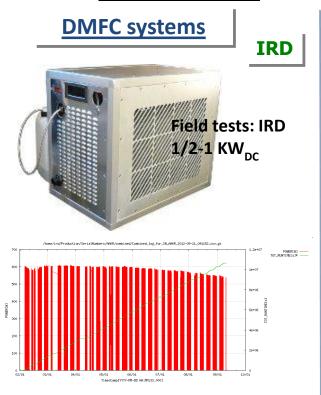

→ DMFC and H2 reformate PEMFC CHP systems

Experimental investigation

→ Tools to quantify & correlate performance and components degradation to operating conditions

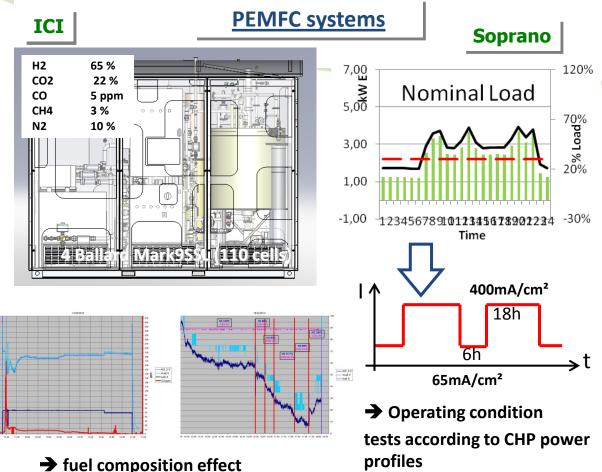
Multi-physics modelling

→ Tools to combine degradation phenomena and analyse their global impact on durability



Premium Act/2

Premium Act


1. Technical Accomplishments and Progress

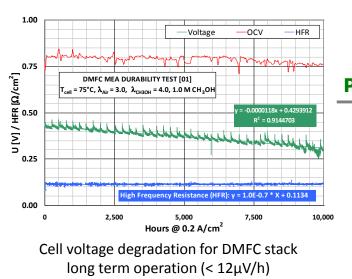
• Ageing studies

Average cell degradation rate ~ 10μV/h @ 40A

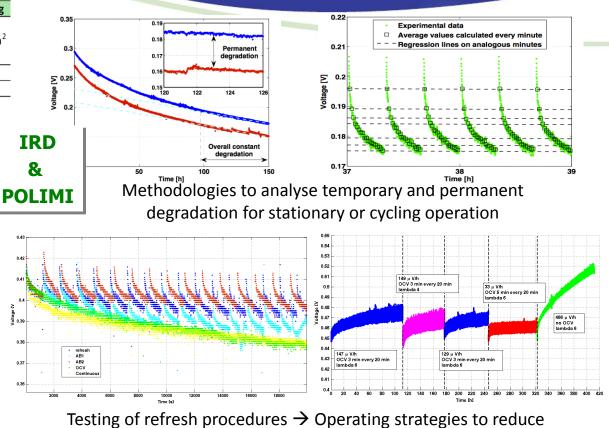
conditions for DMFC SC tests
 Aged DMFC MEAs for analyses

(CO, CO_2 , Air bleed)

→ Conditions and protocols for PEMFC single cells and stack tests (→ aged PEMFC MEAs for analyses)


Premium Act/2

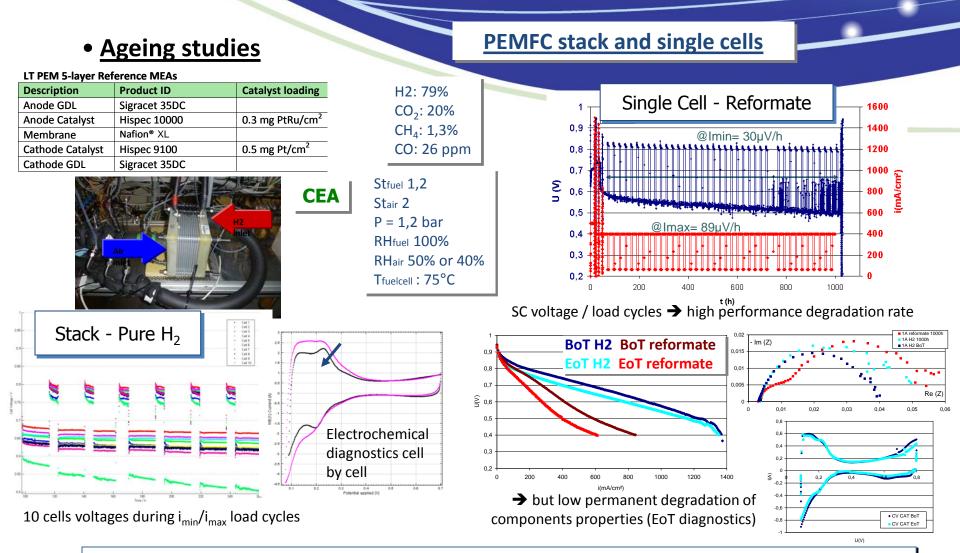
Premium Act


1. Technical Accomplishments and Progress

Ageing studies

DMFC 5-layer Reference MEAs	
Product ID	Catalyst loading
Sigracet 35DC	
Cabot Dynalyst 62RKR4	1.8 mg PtRu/cm ²
Nafion [®] N115CS	
Cabot Dynalyst 65KR2	1.2 mg Pt/cm ²
Sigracet 35DC	
	Product ID Sigracet 35DC Cabot Dynalyst 62RKR4 Nafion® N115CS Cabot Dynalyst 65KR2

DMFC stack and single cells


Testing of refresh procedures → Operating strategies to reduce temporary or overall degradation rate

➔ Further interpretation of refresh procedures vs. temporary and permanent degradation Development and application of other protocols and operating strategies

Premium Act/2

Premium Act

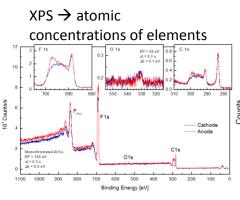
1. Technical Accomplishments and Progress

→ Interpretation to be completed [ex-situ local observations & measurements] - Development and application of other protocols (incl. coupling higher [CO] & cycles) and operating strategies

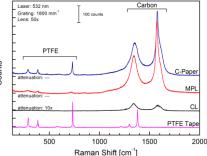
Premium Act/2

Premium Act

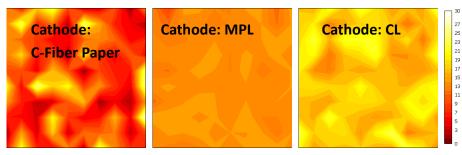
1. Technical Accomplishments and Progress

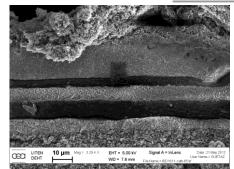

• Characterizations for degradation investigation and quantification

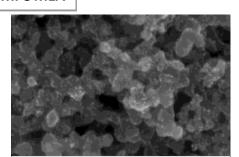
Vertical & lateral Chemical mapping


Electron microscopy observations

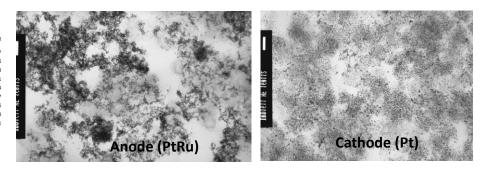
Fresh PEMFC MEA


DLR


Raman → microscopic PTFE and C distribution of GDLs


ATR IR (C-F bonds) \rightarrow macroscopic PTFE & ionomer distribution in the new and aged PEFC and DMFC electrode layers

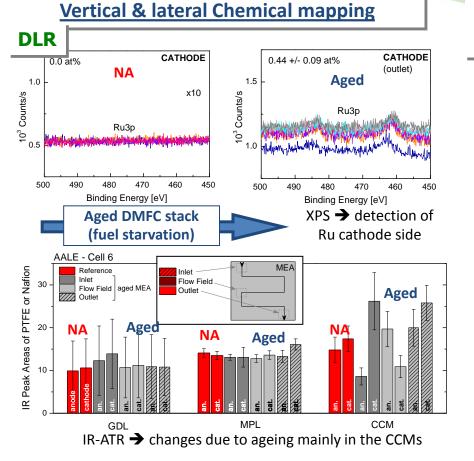
CEA


SEM \rightarrow General aspect of the membrane and MEA

 UTEN
 100 nm May = 500 00 K ×
 EHT = 5.00 kV
 Signal A = InLens
 Date 21 Ma

 DEHT
 WD = 7.6 mm
 File Name = FC11511-cath-59 H
 User Name = GL

 $\begin{array}{l} \mathsf{FEG}\text{-}\mathsf{SEM} \xrightarrow{\rightarrow} \mathsf{Active} \ \mathsf{layer} \\ \mathsf{structure} \end{array}$


TEM + ulramicrotomy ightarrow catalyst layer and particles

Premium Act/2

Premium Act

1. Technical Accomplishments and Progress

• Characterizations for degradation investigation and quantification

CEA CECI DEHT Fresh PEMFC MEA **Cycled PEMFC MEA** CECI LITEN DEHT

Electron microscopy observations

➔ No main modifications : membrane not damaged, active layer structure similar to non aged

➔ Analysis of other aged samples from stack and single cell DMFC & PEMFC Impact of the testing conditions on the components degradation

Premium Act/2

Water fluxes description

0,

N,

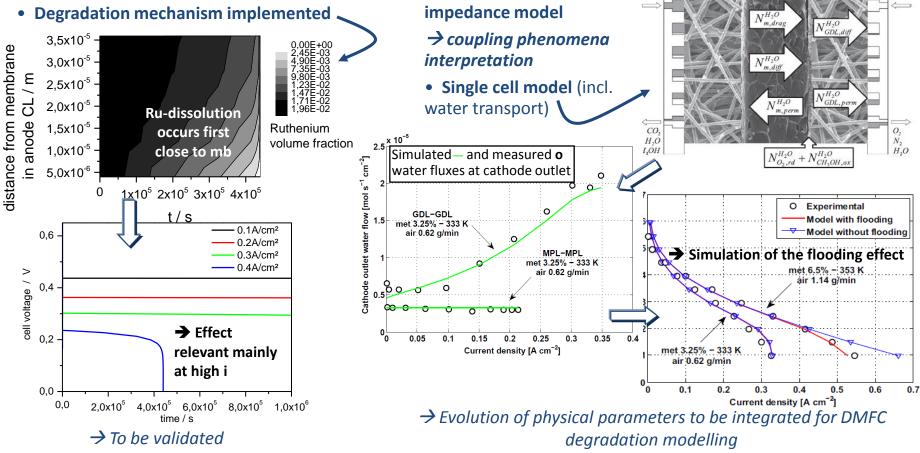
Premium Act

1. Technical Accomplishments and Progress

CH₃OH

H.0

DMFC cell modeling

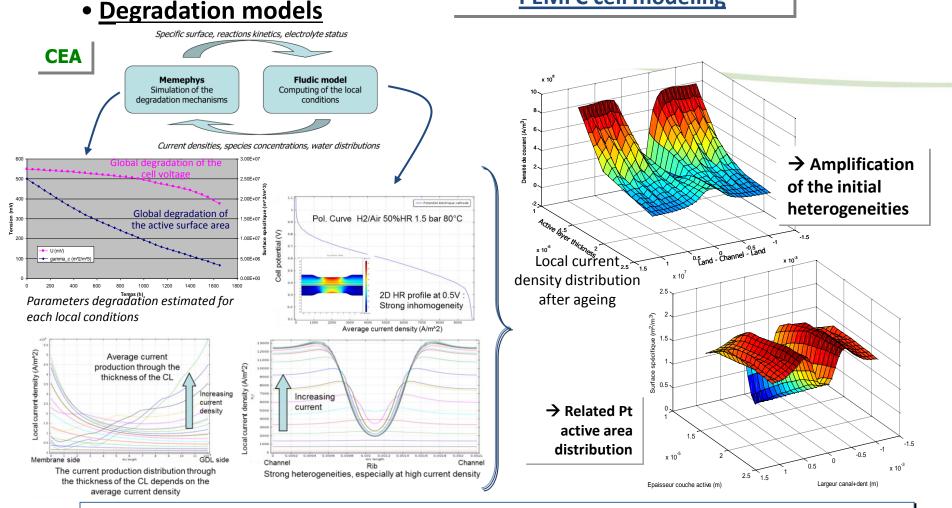

POLIMI

Dev of electrochemical

• **Degradation models**

DLR

 Detailed basic model developed → basis for degradation studies (transient behaviour, EIS)



Premium Act/2

Premium Act

1. Technical Accomplishments and Progress

PEMFC cell modeling

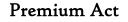
To be correlated with experimental degradation of components and performance regarding the different conditions and protocols

Premium Act/3 2. Alignment to MAIP/AIP

- Correlation of the project with the corresponding Application Area (as mentioned in MAIP/AIP documents)
 - Application area: Stationary Power Generation
 - "emphasis on long-term basic research to better understand degradation/failure mechanisms and the lifetime requirements of all fuel cell stack types (SOFC, MCFC, PEMFC), for different fuels and levels of power."
 - "For lifetime predictions, research is necessary to establish methodologies as well as tools for modelling, operational controls and diagnostics."

Topic: "Fundamentals of fuel cell degradation for stationary power application"

 \rightarrow "Research on critical parameters and operating conditions that impact degradation and life time of cells and stacks, for all power ranges and fuel cell technologies"



Premium Act/3 2. Alignment to MAIP/AIP

- <u>Detailed project activities & results versus MAIP/AIP document targets</u>
 - ✓ Direct link between previously described activities & targets (Cf. approach slides)
 - Application μ-CHP systems with different requirements
 - 2 Fuel Cell types / fuels : DMFC (Methanol) & PEMFC (reformate)
 - Power ranges: from 500W stack to 30kWe PEM CHP syst.
 - Technical activities

Specific degradation mechanisms for PEFC operating with methanol and reformate

- FC tests (system, stack and cell levels): nominal and critical conditions
- Studies of the microstructure & properties before/after ageing
- Modelling of the degradation mechanisms
- ightarrow Identification of main parameters enhancing degradation
- → Development of accelerated tests
- → Proposal & validation of lifetime prediction methodology

Premium Act/3 2. Alignment to MAIP/AIP

- Identify and comment on gaps/bottlenecks in RTD&D proposed by MAIP/AIP documents
 - Most topics of Premium Act are considered in the MAIP/AIP
 - ✓ DMFC technology is not directly included in the implementation plan whereas currently subjected to a significant commercial interest
- Comments on priorities and topics possibly under/over-estimated in the AIPs in terms of technical challenge
 - For stationary applications, degradation understanding and durability improvement are the right priorities
 - ✓ Durability of 40000 hours: too wide requirement
 - \rightarrow more focused targets to be proposed / specific application
 - → technical challenges to be more related to components or operating conditions constraints

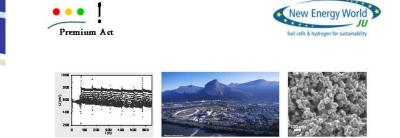
Premium Act/4 3. Cross-cutting issues

Premium Act

•Training and Education

- Post-doctoral researchers, PhD and MSc students involved in activities at CEA, DLR & POLIMI
- Polimi personal exchange:
- M. Zago \rightarrow DLR from 6/12 to 8/12
- F. Bresciani \rightarrow IRD Fuel Cell 8/12 to 10/12

• Safety, Regulations, Codes and Standards


 Possibility to contribute to future standards definition thanks to project outcomes on traditional and accelerated testing & on degradation models

• Dissemination & public awareness

• Journal publication: Zago, M., Casalegno, A., Santoro, C., Marchesi, R. "Water transport and flooding in DMFC: Experimental and modeling analyses", 2012, Journal of Power Sources 217, pp. 381-391

• Premium Act results to be presented at FC papers & conferences (incl. exhibition for indust.) (All partners) [ex: FDFC 2013]

• Premium Act workshop

"Characterization and quantification of MEA degradation processes"

September 26-27, 2012 in Grenoble, France

Invited Speakers:

- Atsushi Ohma (Nissan Research Center, Japan): "Study on Microstructure of Catalyst Layer and its Impact on Performance and Degradation"
- Karren More (Oak Ridge National Laboratory, USA):
 "Application of Advanced Microscopy Methods to Understand MEA Materials Degradation
- Hans Bettermann (Unives ity of Düsseldorf, Germany): "On-Line Gas Detections from PEM Fuel Cell Flow Fields by Raman Measurements and Electric Arc Emission Spectroscopy"
- Lactitia Dubau (LEPMI, Grenable University, France): "Durability of "PtyCo/C Cathode Electrocatalyst during Long-term Real PEMFC Operation"
- Arnaud Morin (LITEN, CEA-Grenoble, France):
 - "What about the link between chemical degradation of membrane and PEMFC durability? The example of S-PEEK Membrane"

4. Enhancing cooperation and future perspectives

Premium Act

- Technology Transfer / Collaborations
 - Interaction with EU projects
 - Use of knowledge & results from DECODE project [degradation mechanisms, modelling data, investigation methods]
 - Exchanges posssible with new projects e.g. IMPACT, IMPALA, PUMAMIND... [degradation, water management, modelling]

• Interactions at national level (French, German, Italian or Danish FC projects)

- Possible exchanges and use of knowledge & results from national funded or other collaborative projects (all partners)
- Interaction with the national Real FC project : exchanges regards experimental data and testing methodology (POLIMI Italy)
- Interactions at international level
 - Possible exchanges about methodologies (for all technical aspects of testing, characterization or modelling) thanks to:
 - close direct relationships with other industrial groups, institutes or universities
 - involvement in international working groups (IEA, standardization bodies...)

Premium Act/5 <u>4. Enhancing</u> cooperation and future perspectives

Premium Act

• Project Future Perspectives

- Proposed future research approach and relevance & Need/opportunities [for increasing cooperation, building alliances & for international collaboration]
 - RTD topics: Emphasis on fuel/methanol purity

Development of more generic ACCT for DMFC and PEMFC

• Premium Act: balanced consortium with 3 industries developing FC systems

ightarrow possible extended collaboration for further optimisation of the FC systems studied

 \rightarrow possible extension to other industries or institutes interested in the approach

- At international level: contribution to future definition of RCS (methanol purity, degradation tests or models)
- Possible contribution to the future FCH JU Programme
 - Include research and demonstration of methanol/greenfuel based fuel cells e.g. DMFC in the implementation plan.
 - Recommendations for projects dedicated to specific systems development:
 - Proposition of; exp./model methodology for degradation study; *ex-situ* investigation methods and testing protocols; validated prediction methodology

Thank you for your attention