

GrInHy

Green Industrial Hydrogen via reversible high-temperature electrolysis

Programme Review Days 2018 Brussels, 14-15 November 2018

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Oliver Posdziech Sunfire GmbH

www.green-industrial-hydrogen.com

info@green-industrial-hydrogen.com

PROJECT OVERIVEW

- **Call year: 2015**
- **Call topic:** FCH-02.4-2015: Proof-of-concept of HT electrolysers at a scale > 70 kW
- **Project dates: 03/2016 02/2019**
- % stage of implementation 01/11/2018: 95 %
- **Total project budget: 4,498,150 €**
- FCH JU max. contribution: 4,498,150 €
- **Other financial contribution: 0 €**

Partners: Salzgitter Mannesmann Forschung GmbH, Salzgitter Flachstahl GmbH, Sunfire GmbH, **Boeing Research & Technology Europe, Technical Research Centre of Finland Ltd (VTT),** European Institute for Energy Research, Institute of Physics of Materials, Politecnico di Torino

PROJECT SUMMARY

GrInHy – Green Industrial Hydrogen via reversible high-temperature electrolysis

Objectives

Objectives	Context	Status
SOEC electrical efficiency, 80 % _{LHV}	AWP 2015	(🕑)
Electrolyser capacity, 150 kW _{el,AC}	AWP 2015	Ø
Lifetime system test, 7,000 h	AWP 2015	\bigotimes
Stack durability, > 10,000 h, < 1 % /kh	additional	(🕑)
Proof of reversible operation	additional	Ø
Dependable data on system costs	MAWP	Ø
Preparation of exploitation roadmap	MAWP	

Application and market area

- Steel Industry Hydrogen (3.8) for annealing processes
- Other industrial, mobility or energy sector related hydrogen applications in combination with waste heat

Global positioning vs international state-of the art

State of the Art	Source
SOEC electrical efficiency (systems)	N/A
Electrolyser capacity, 75 kW _{el,AC}	Boeing/Sunfi
Lifetime system	N/A
Stack durability, 1,800 h, < 2 % /kh	Sunfire 201
Reversible operation (H2-FC only)	Boeing/Sunfi
Dependable data on system costs	N/A
Preparation of exploitation roadmap	N/A

PROJECT PROGRESS/ACTIONS – Electrolyser capacity

75 kW

- AWP 2015: Minimum (electrolyser) capacity of 70 kW
- **SoA:** Sunfire and Boeing developed a rSOC system (2x75 kW_{el}), start of operation in 2016
- **GrInHy:** Manufacturing of a reversible SOC unit with a capacity of **150** kW_{el,AC} (BoP included) coupled to a hydrogen processing unit to compress, dry and inject H₂ into the pipeline at 8 bar_(g)
- Start of manufacturing: 10/2016
- Start of commissioning: 06/2017

75%

150 kW_{el}

25%

50%

PROJECT PROGRESS/ACTIONS – Electrical efficiency & reversibility

Achievement to-date

- SoA: Electrolyser efficiency no relevant data available for 2016
- GrinHy: Achieved today 92 %_{HHV} (78 %_{LHV}) by using steam from waste heat at thermo-neutral operation \rightarrow Limited by low efficiency power electronics efficiency in electrolysis mode \rightarrow Recalculation showed that the system as it is build could reach 99 %_{HHV} (84 %_{LHV})
- Additional target: Reversibility Sunfire/Boeing H₂-rSOC Prototype from 2015 GrInHy: "Full" reversibility, i.e. FC operation with hydrogen (30 kW_{AC} at 47 %_{LHV}) and natural gas (25 kW_{AC} at 50 %_{LHV})

PROJECT PROGRESS/ACTIONS – Lifetime, degradation

Achievement to-date

2,000 h_{syst} 1,800 h_{stack} 2 %/kh

- AWP 2015: Minimum electrolyser system lifetime 2,000 hours

- SoA: internal tests 2015: Stack tested in electrolysis operation of max. 1,800 h
- GrInHy:

 - in stable steady-state operation of more than 3,000 h without any failures (ongoing)
 - Degradation <0.8 %/kh on system level(!), 0.5 %/kh on stack level over 3,000 h

GrinHy: Achieved today 7,000 hours system lifetime, steady state FC and EC acc. 50 % load operation \rightarrow More challenging operation will be continued after exchange of early worn stacks in 11/2018

• Additional target: Stack durability in SOEC mode for > 10,000 h and less than 1 % /kh degradation

Long-term stack test operation was aborted after 8,000 h (stack damages by test bench failures) • Operation time limited because of BoP-components \rightarrow improvement of components and test benches results

PROJECT PROGRESS/ACTIONS – Cost analysis, exploitation roadmap

- MAWP 2014-2020: Development of dependable system cost data
- GrInHy: Analyzed cost of the prototype system in detail and provides cost targets for next generations
- MAWP 2014-2020: Elaboration of Exploitation Roadmap
- GrInHy: Draft version was elaborated, will be updated before project end

Risks, Challenges & Bottlenecks

Risk: Electrolyser efficiency not reached

- Mitigation measures: Exchange of BoP components to minimize parasitic losses
- Risk materialization: Power electronics efficiency lower then expected
 - \rightarrow Recalculation shows potential of the prototype

Risks, Challenges & Bottlenecks

- Mitigation measure 1: Test of several stacks at Eifer and Sunfire
- Mitigation measure 2: Test of different cell technologies
- Risk materialization: Long-term stack test was aborted after 8,000 hours due to test bench failures (e.g. breakdown of water supply) that led to stack damages
- Low Degradation of ~0.5%/kh could be shown over 3,000 h of stack operation

Risk: Stack lifetime and degradation targets not fully reached due to test bench limitations

Dissemination Activities

Joint Workshop – 03/09/2018, Salzgitter "Route to Industrialisation of High-Temperature Electrolysis"

- Workshop organized with ECo project (FCH2 JU, 699892)
- 40 experts from 8 EU countries (industry, research organisations)

Focus: System design, Stack/cell maturity, economics, applications, LCA

Statistics

- Number of conferences/workshops 1 organized / 44 attended
- Number of publications: 5
- Number of patents: (2)
- Public deliverables of the project

Communications Activities

Main communication instruments: Website, conferences and fairs

Conference "Hydrogen and fuel cell applications in Lower Saxony" (7th June '17)

- a.o. excursion to GrInHy system
- Ca. 160 participants (politics, industry, media)

Hannover Messe 2017 and 2018

Prominent project representation at the booth of Salzgitter AG

EXPLOITATION PLAN/EXPECTED IMPACT

Exploitation

- Development of a multi-step research and scale-up plan to exploit products and generated knowledge (Exploitation Road Map)
- GrInHy2.0 (project start 01/2019) will show the 1st MW-scale SOEC system with improved robustness and enhanced lifetime
- Gaps and hurdles for a commercial product launch have been analyzed and are subject of communication activities

MW-scale HT electrolyser system: GrInHy2.0

Impact

- Successful integration of a rSOC system at industrial relevant scale in Salzgitter's iron and steel work producing high quality hydrogen
- Proof that HT electrolysers achieve superior electrical conversion efficiencies of 40 kWh/kg_{H2} by using steam from waste heat
- Dynamic and flexible operation as electrolyser and fuel cell (with H₂ and natural gas) show potential in coupling with fluctuating renewable electricity
- Significant cost reduction
- Paving the path for succeeding large-scale projects

GrInHy: We say "Thank you!"

GrInHy

Green Industrial Hydrogen via reversible high-temperature electrolysis

Programme Review Days 2018 Brussels, 14-15 November 2018

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Oliver Posdziech Sunfire GmbH

www.green-industrial-hydrogen.com

info@green-industrial-hydrogen.com

