

Introduction to Hydrogen production, distribution and storage portfolio

N. Lymperopoulos - Project Manager Hydrogen production

http://www.fch.europa.eu/

AGENDA Day 2 Afternoon

	PLENARY SESSION ON HYDROGEN PRODUCTION, DISTRIBUTION AND STORAGE
16:00 - 16:15	Introduction to hydrogen production, distribution and storage portfolio: Nikolaos Lymperopoulos (Alcide de Gasperi Room, 2 nd floor)
16:15 - 16:20	Q&A
	Panel 5 - Energy RTD and demonstration: Hydrogen production, distribution and storage
	Moderators: Nikolaos Lymperopoulos and Bernard Dam
	Panel - Low carbon hydrogen production - Electrolysis
16:20 - 16:35	RESELEYSER
16:35 - 16:50	ELECTROHYPEM
16:50 - 17:00	Q&A
	Panel - Low carbon hydrogen production - Other routes
17:00 - 17:15	ARTIPHYCTION
17:15 - 17:30	HYTIME
17:30 - 17:50	Green Hydrogen Study
17:50 - 18:00	Q&A
	Panel - Hydrogen storage, handling and distribution
18:00 - 18:15	HYTRANSFER
18:15 - 18:30	EDEN
18:30 - 18:40	Q&A
18:40 - 18:50	Concluding Remarks
	Eden Mamut, Chair of Scientific Committee (Alcide de Gasperi Room, 2nd floor)
18:50 - 19:00	Event key message and closure
	Bert de Colvenaer, FCH 2 JU Executive Director (Alcide de Gasperi Room, 2nd floor)
19:00 - 19:45	Poster Session - Panels 5 and 6 Manned (2nd floor)
19:45 - 21:00	Cocktail Dinner and Networking

• H₂ Production & Distribution Application Area

Public Awareness, Education

Market Support (SME Promotion, Demand-Side Measures, etc.)

	trations	Backup/UPS		
Vehicles & Infrastructure	Low Carbon Supply Chain	System Readiness Manufacturability	Off-road H2 Vehicles Micro/Portable FC	
Technol	gy, Sustainability & Soci Specific PNR &	io-Economic Assessment Framework Harmonised RCS		
Research and Technological Development				
Stack & Subsystems	Processes & Modules	Periphery & Components	Systems & Integration & Testing	
Components	New Technologies	Material & Design & Degradation & Research		
Long-term & Breakthrough-Orientated Research				
Transport & Refuelling Infrastructure	Hydrogen Production & Distribution	Stationary Power Generation & CHP	Early Markets	

2014-2020 MAWP

H₂ Production & Distribution in Energy Pillar

HORIZ 🖉 N 2020

- Road vehicles
- Non-road vehicles and machinery
- Refuelling infrastructure
- Maritime, rail and aviation applications

- Hydrogen production and distribution
- Hydrogen storage for renewable energy integration
- Fuel cells for power and combined heat & power generation

Cross-cutting Issues

(e.g. standards, consumer awareness, manufacturing methods, ...)

Projects financed since 2008

Number of projects 169 (of which FP7: 155)

Max FCH JU contribution 520 M€ (of which FP7: 446 M)

Hydrogen Prod., Stor. & Distr. Technical Coverage

Panel 5 projects in a nutshell

TOPIC	2011	2012	2013	2014	2015	2016	2017	2018
Alkaline	RESELYSER							
electrolysis		E	LYGRID					
		E	LECTRO	HYPEM				
DEM alactrolysis			NOV	EL				
PEM Electrolysis				DONC	UICHO	Е		
					MEC	SASTACK		
High						TH		
Temperature					SOPH	IA		
Electrolysis					ELECT	RA		
Concentrated				SOL	.2HY2			
solar				HYDR	ROSOL-F	LANT		
Photo-			ARTIP	IVCTION	N I			
electrochemical					PECD	EMO		
			COMI	ETHY				
Reformers			NEME	SIS2+				
				BioRo	bur <mark> </mark>			
Biomass			UN	llfHY				
Biological	HYTIME							
H2 storage	BOR4STORE							
(boron+MH)	EDEN							
H2 tanks				HyTran	sfer			
Studies			ELY	ES	GH			

Electrolysers - 1

 Alkaline (RESELYSER, ELYGRID)

	Aim	Status
η	>80%,	76-82%
η retention	>90% over 1,000 on/off	>98% over 1,100
cost (k€/Nm ³ .h)	3	7
capacity (tn/d)	1.5	3

- PEM (ELECTROHYPEM, NOVEL, DONQUICHOTE, MEGASTACK)

	Aim	Status
η (kWh/Nm ³)	< 4	3.53
V increase (µV/h)	< 15 @ 1 A cm ⁻²	8
H2 cost (€/kg)	< 15	13 (RES cost)
capacity single stack (Nm ³ /h)	100	60

- Electrolysers 2
 - High temperature (HELMETH, SOPHIA, ELECTRA)

Helmeth	Aim	Status	
η (%)	85-95%,	86%	

- Achieved: 5kW, 10bar, 700°C, total η 86%
- Scope:Design, fabrication, and operation on-sun of a 3 $\rm kW_e^-$ size pressurized High Temperature Electrolysis (HTE) system, coupled to a concentrated solar energy source
- Scope: build and test a kW size multi-tubular proton ceramic high temperature electrolyser for production of hydrogen from steam and renewable energy

• Concentrated solar (SOL2HY2, HYDROSOL-PLANT)

- Scope: Development of the key hybrid plant components: SO₂-depolarized electrolyzer (SDE), solar-powered H₂SO₄ cracker and heat storage
- SDE stack constructed & tested for $\rm H_2$ and $\rm H_2SO_4$ co-production
- Aim: 0.5-2.0 MW, Design for >0.5 MW

Hydrosol-Plant	Aim	Status	
Lifetime (h)	> 1,000	450	$\mathbf{\odot}$
Capacity (MW)	0.5-2	0.75	$\overline{\bigcirc}$

• Photo-electrochemical (ARTIPHYCTION, PECDEMO)

ARTIPHYCTION	Aim	Status	
η (%)	5	2 (for high durability)	
Durability (h)	> 1,000	+ 450	

PECDEMO	Aim	Status
η (%)	8-10	2.1, trend for improvement
Durability (h)	> 1,000	

Semiconductor Electrolyte Metal

• **Reformers** (COMETHY, NEMESIS2+, BIOROBUR)

COMETHY	Aim	Status	
η of SMR (%)	>70%	> 70% for >5,000 Nm ³ /h	
Catalyst replacement (h)	< 4	< 2	
Scalability (Nm3/h)	2-750	2	\bigcirc

NEMESIS2+	Aim	Status	. .
η of SMR (%)	>70%	< 70%	
H_2 production cost (ϵ/kg)	< 4	5.8	DiesebBiodesel
Material Cost (€/Nm ³)	< 5,000	4,500	

BIOROBUR	Aim	Status	Trap section
Capacity (kg/day)	50-250		Reaction section
Catalyst η (CO vol%)	< 10		Evaporation an mixing section
Biogas to H_2 (%)	> 65		Feeding section

• Biomass gasification (UNIFHY)

	Aim	Status	
Cost of H_2 (ϵ/kg)	< 5	< 5 conditionally on Capex	
η (%)	67	seems achievable	UNIfHY 1000 flowsheet
Scalability (kg/day)	> 500	50-500	O

• Biological routes (HYTIME)

	Aim	Status	
Mobilisation of sugars (%)	>75%	71 straw, 36 grass, 10 waste	
Stable prod (kg/day)	1-10	225 L 0.1	
Productivity $(gH_2/L.h)$	0.08	0.04	

• H2 Storage (BOR4STORE, EDEN)

	Aim	Statuc	
	AIIII	Status	
Capacity (kg/m ³) / (wt%)	> 80 / > 8	100 / 9-10 (material basis)	
Capacity with tank (wt%)	> 4	2	
FC compatible (temp)	< 450	350-450	
Cost (€/kg)	< 500	5,000	

• H2 tanks refilling (HYTRANSFER)

- Scope: optimise fast filling of CH tanks meeting material temperature limits, providing recommendations to RCS
- CFD model developed, 3°C error
- 65 filling/emptying on two types of tanks

- Green Hydrogen Pathways Study
 - Performed by LBST and Hinicio
 - Aim: to identify most promising green H_2 production pathways based on a number of key parameters
 - 11 pathways assessed, 6 selected
 - Soon available at <u>http://www.fch.europa.eu/studies</u>

Conclusions

- ✓ Comprehensive coverage of MAIP/MAWP objectives
- ✓ FCH JU supports a broad variety of pathways for H2 production, storage and distribution
- Electrolysers successfully diversifying to dynamic operation, high Pressures and Temperatures
- ✓ Potential of concentrated solar to be assessed in the field
- ✓ PEC reaching prototype level
- ✓ Reformers mature, aiming for increased versatility
- ✓ Bio-mass/logical routes in need of breakthroughs
- \checkmark MH-based H₂ storage in need of identifying market niches

Thank you for your attention!