HyCOMP - Enhanced Design Requirements and Testing Procedures for Composite Cylinders intended for the Safe Storage of Hydrogen

(Grant agreement n°256671)

Fabien NONY - CEA On behalf of C. Devilliers (Coo.)/AL <u>www.hycomp.eu</u>

PROJECT OVERVIEW

- HyCOMP is a Pre-Normative Research (PNR) project on composite tank storage
 - Call topic : SP2-JTI-FCH.1.5 Pre-normative Research on Composite Storage
- Launched in January 2011 and finished in March 2014 (39 months)
- Budget: 3 802 542 € of which 1 380 728 € (36 %) is funded by FCH-JU
- Partnership:

3 tank manufacturers

• Stage of implementation: 100% of project duration

PROJECT PRESENTATION

- Need to improve the performance of storage vessels
 - Performance objectives in terms of cost efficiency, safety and improved logistics (high quantity transported and low compacity)
 - Gravimetric storage capacity = m_{H2} / (m_{system} + m_{H2}) (in wt.% hydrogen) \geq 4,8 %
 - Volumetric storage capacity = m_{H2} / V_{system} (in gH2/L)

```
Targets fixed by the FCH-
JU
by 2015-2016
```

- Strong need to have composite pressure vessels that are:
 - Reliable & safe (in any circumstances in normal service conditions) <u>AND</u> cost competitive

PROJECT PRESENTATION

• Example of transportable cylinders @ 700 bar (ALL gases / EN12245)

PROJECT PRESENTATION

- Target #2 : Need to improve standards to better address structural integrity of composite cylinders throughout their service life
- Goals & expected outcomes:
 - Quantify the damage accumulation rate in composite materials, in order to preserve structural integrity of CPV
 - Improve design requirements (including acceptable stress ratios for carbon fibres) and testing procedures for type approval, manufacturing quality assurance and inservice inspection
 - Disseminate project recommendations through RCS and industrials (cylinder manufacturer, OEMs, etc.).

HyCOMP is a Pre-normative Research Project → No quantified targets

AIP target	Project Target	Status/achievements	Perspectives
"Pre-Normative Research on composite storage to address design criteria like ageing, pressure levels, shock resistance, failure modes. The goal is to establish production and performance standards and define safety factors" - <i>No figured target</i>	Improve the full set of requirements to ensure the structural integrity of the cylinders throughout their service life, for different type of testing: • Design type approval, • Manufacturing quality assurance, • In-service inspection.	80 % : Improvements of qualification test conditions and criteria have been proposed, except for in-service inspection	Development of in-service inspection is a project in itself and has not been covered by HyCOMP → Launch of HyPactor in April 2014

HyCOMP is a Pre-normative Research Project → No quantified targets

MAIP target	Project Target	Status/achievements	Perspectives
"Design and test criteria for high pressure composite storage tank" - <i>No figured target</i> (Transport & Refueling Infrastructure application area)	Enhance design requirements for Composite Pressure Vessels (CPV) for storage or transport of	90 % : A value of SF has been proposed based on a	Justify the concept of Safety Factor, and the contribution of different parameters to this SF
"Safe, efficient and reliable hydrogen distribution and refueling infrastructure" - <i>No</i> <i>figured target</i> (Hydrogen Production & Distribution application area)	compressed hydrogen, by redefining a safety factor (SF) value based on anticipated degradation in service	scientific justification at a material scale.	Demonstration of a possible SF on cylinders from various manufacturers, various designs, etc.

Determination of damage kinetics at a <u>material scale</u> in order to predict durability

- •Assess the effect of operational loads (pressure loads, environmental conditions)
- Develop a **predictive model** able to account for the composite damage kinetics
- Definition of an intrinsic Safety Factor (iSF) covering intrinsic material properties only

-Based on specimen results ONLY-A "science based" minimum SF has been defined (hypothesis = Under a constant load and 10⁻⁶ probability of failure) A min **iSF value of 1.4** must be applied to **guarantee specimen lifetime ≥ 20 years** under a constant load, with a probability of failure (10⁻⁶)

→ Must be <u>taken with an extreme caution</u> (determined on UD specimens with specific materials)

→ Need to <u>consider other parameters</u>: full-scale cylinder structure, type of materials, effect of temperature, process parameters variability... Probabilistic description of the failure mechanisms at the material scale Multi-scale approach and modeling

Determination of damage kinetics at a cylinder scale (type 3 & type 4 cylinders)

- •<u>T3 cylinders</u>:
 - Identification of parameters leading to premature liner failure (autofrettage, service conditions...)
 - Development of new test procedures / methodologies based on a **probabilistic assessment of test results** to evaluate the current state of damage of pressure cylinders
- •<u>T4 cylinders</u>: State of damage after cycling test (effect of mean cycle pressure, effect of amplitude, etc.) by Acoustic Emission
- •<u>T3 & T4 cylinders</u>: Effect of gaseous load cycle on the mechanical behavior of the cylinder wrapping

Approximately 80

cylinders tested

Highly instrumented H2 cycling test at the JRC-IET reference laboratory on own funding

Target #2 : Improved requirements / Manufacturing Quality Assurance

- •<u>Objective</u>: Define requirements for ensuring that manufactured cylinders will behave as observed under type approval
- •Characterization of cylinder performance due to variations in manufacturing parameters

• Characterization of initial strength (burst) and long term properties (pre-conditioning + cycling)

120 cylinders tested

- •Curing of the matrix has shown to have the greater influence on cylinder performance
 - → Requires then a specific attention (included in recommendations)

- 9 recommendations have been extracted from HyCOMP results
- Main recommendations:
 - 1. Reduce the Design Pressure to the Maximum Developed Pressure at the maximum temperature for dedicated service (especially Hydrogen 70 MPa).
 - 2. Reduce Safety Factor to a fixed value in between 1,4 and 2 (to be decided), e.g. 1,8
 - 3. Make statistical assessment
 - 4. Add specifications on T_g
 - 5. Perform tests at the new Design Pressure
 - 6. Tests at elevated temperature should be performed at $5^{\circ}C$ above T_{max} defined for the application
 - 7. Add test to verify the good curing of the resin (e.g. Barcol test)
 - 8. Control each manufactured cylinders to detect any deviation from a reference batch, i.e. by using Acoustic Emission
 - 9. Continue to **develop Non-Destructive Techniques** to carry out periodic inspection of composites pressure vessels

RISKS AND MITIGATION (analysis after project)

- MAIN RISK: Recommendations not implemented into standards
 - Action taken: dissemination workshop organized in junction to ISO meetings in order to convince experts with HyCOMP results.
 - Strengthening the involvement of partners into normative working groups
- <u>Reduction of SF</u>: Fail to win unanimous support
 - Why?
 - Touchy topic: safety, intercomparison of competitive products...
 - No real « meaning » given to the Safety Factor (pure margins). How to quantify margins?
- <u>Design type approval</u>: Difficulty to propose new testing (or improve existing testing) representative of all types of loads encountered in service
 - Small improvement of existing testing have been proposed: adjustment of testing pressure mainly,
 - Modernization of current standards by statistical assessment

SYNERGIES WITH OTHER PROJECTS AND INITIATIVES

• Earlier projects:

- **StorHy** (European project, finalized in 2008): similar intention as HyCOMP on the way to design cheaper cylinders by a more intelligent approval approach.
- HyCube (KIC, 2011-2013): dedicated exchanges of test results and its statistical assessment
- DeliverHy (FCH-JU, 2012-2013): strong collaboration with DeliverHy project whose objective is to optimize transport solutions for compressed hydrogen, because:
 - SF decrease is an option to improve the capacity of transport solutions;
 - Adapted testing procedures for the approval of large cylinders are required.

DISSEMINATION ACTIVITIES

- Dissemination workshop organized in Paris (AFNOR facilities) at the end of HyCOMP (05/03/2014)
 - Objectives:
 - Present HyCOMP experimental results and recommendations, in order to convince experts in the field of composite pressure vessels for the storage of hydrogen (manufacturers, end users, test laboratories, OEMs, etc).
 - Obtain feedbacks on the work carried out in HyCOMP and the recommendations coming from the project.
 - Two ISO Technical Committees have been targeted:
 - TC58 Gas cylinders (all gases, not only hydrogen),
 - **TC197 Hydrogen technologies** (all technologies in the Hydrogen Energy field, not only composite pressure vessels).
 - Invitation :
 - Sent to registered members of TC58 and TC197, and largely diffused by partners to relevant people
 - Personal invitation sent to OEMs : Volkswagen, Opel/GM, Honda ...
 - **40 people** attended the workshop, among which 22 from external audience (4 by teleconference).

DISSEMINATION ACTIVITIES

- Around 15 dissemination activities attended by the project:
 - Several conferences with oral presentation (and papers for conference proceedings):
 - <u>Industry audience</u>: WHEC 2012, 4th International Carbon Composites Conference
 - <u>Scientific audience</u>: ICCM 2013 (International Conference on Composites Materials), German congress on acoustic emission, ASME 2013 Pressure Vessels & Piping Conference...
 - Oral presentation at PRD each year since the beginning of the project
 - Several publications written by academic partners mainly, to be submitted in peer-reviewed scientific journals
 - International Journal of Pressure Vessels and Piping
- No application for patents, trademarks, registered designs, etc... during the project

EXPLOITATION PLAN / EXPECTED IMPACT

- How will the project's results be exploited? When? By whom?
 - Some HyCOMP partners are member of standardization working groups (Air Liquide, Faber, Hexagon, CCS, CEA)
 - Must support HyCOMP recommendations in these WG after project termination...
 - No control of the timing for a revision of current standards
 - A non-compressible time is needed to get a revised standard (around 2 years)
- What are the achievements that will allow progressing one step further to cost reductions and enhanced performance (efficiency, durability)?
 - It would be of interest to perform a full approval test program on different commercial cylinders with a reduced safety factor (demonstration step)
- How can the results from your project be taken on-board by industry?
 - Having a cylinder with a reduced safety factor on the market will probably take few years (2-3 years), after standards have changed...

END OF PRESENTATION

THANK YOU FOR YOUR ATTENTION ANY QUESTIONS?

http://hycomp.eu

