Thermo plastic Hydrogen tank **Optimized & Recyclable** ✦ H₂ European F00-THOR Hydrogen Week **Denis RAGOT** FAURECIA https://thor-fch2.eu/

#EUResearchDays #PRD2022 #CleanHydrogen

denis.ragot@forvia.com

P EUROPEAN PARTNERSHIP

Thermo plastic Hydrogen tank Optimized & Recyclable

Strengthening of the European supply chain for compressed storage systems for transport applications

Coordinator: FAURECIA Speaker: Denis RAGOT

(cetim

EUROPEAN PARTNERSHIP

FORVIA

faurecia

OAIrLiquide RIA < sirris 🖸 NTNU 🤅

(cetim

Call reminder: 2,7 M€ - RIA

- Prepare the H2 market increase for compressed Hydrogen tanks
- Broaden the number of players (tier1 & 2 suppliers) for high pressure H2 vessels
- Decrease the storage costs and increase the performances of the tanks

Consortium response: 2,85 M€, 36+9 months

- Propose a new **thermoplastic H2 tank** technology to allow the recyclability
 - Solution which could be used for transportation
- Investigate the thermo plastic technology to ensure that it could be applied for high pressure H2 storage systems
- Estimate the manufacturing plant to respond to a 30,000 tanks per year

EUROPEAN PARTNERSHIP

FORVIA

faurecia

Co-funded by the European Union

THOR - 826262

The project Consortium

Industrial & Technical partners

- **Faurecia**, France coordinator, •
 - Industrialisation & mass production aspect
- Air Liquide, France ٠
 - End user for high pressure Hydrogen distribution Ο
 - Expertise for the fuelling/defueling 0
- **CETIM**, France
 - Process definition with laser Assisted Tape Winding

Clean Hydrogen Partnership

- Modelling and prototyping of tanks
- **CETIM Grand Est**, France •
 - Recycling process
- **RINA-CSM**, Italy •
 - Testing facilities of tanks Ο

Research partners

- **SIRRIS**, Belgium
 - Modelling, winding definition and optimization
- **NTNU**, Norway
 - Optical fiber instrumentation, data analysis
- **CNRS PPRIME**, France
 - Thermomechanical modelling and material behaviour in fire

Co-funded by

the European Union

faurecia

EUROPEAN PARTNERSHIP

Technical side

- Thermoplastic solution was not used for high pressure gaseous H2 storage
 - Materials had to be selected (PA11 & PA12 tapes with PA11 liners)
 - 6 different tapes used
 - Design to be adapted (based on a 631 inner volume tank, 2 type of liners)
 - Winding process with tow preg to be used •

Project run out

- CO2 issues ٠
 - COvid has slowed down the project ٠
 - COvess, which was initialy in the Consortium, decided to leave the project •
 - Consortium had to redo completly the work and the material selection •

-> +9 months accepted by Project Officer

faurecia

FORVIA OffirLiquide RIA sirris ONTNU (Cetim

(cetim

The project results - WP2 & 3

Tank design, modeling

SIRRIS

- Woundsim & Abaqus used for the winding pattern & bosses optimization
- Correlation with iterative experimental results has shown that out-of-plane stiffness value is of prime importance to predict the burst value and the failure mode (also seen with CETIM software Optitank)
- New design was optimized to respect the expected performance (1575 Bars minimum burst pressure)

(cetim

	#layers (-)	Weight (kg)	Pburst (bar)					
			End (Top-Boss)	Dome_1	Dome_2	Cylinder_1	Cylinder_2	GLOBAL
Model H3	82	52,62	1648	1476	1507	1454	1510	1476
Model_I_V05	82	52,27	1639	1585	1533	1729	1451	1451
Model I_V06_A	78	48,40	1614	1517	1517	1504	1508	1504
Model_I_V06_V2	84	53,61	1699	1558	1558	1565	1557	1557
Model V07_D4	87	55,91	1731	1580	1580	1596	1582	1580

EUROPEAN PARTNERSHIP

FORVIA

faurecia

Co-funded by the European Union

◎AirLiquide RIA <sirris □ NTNU (Cetim)</p>

THOR - 826262

The project results - WP4

Clean Hydrogen Partnership

Tank manufacturing CETIM

Process: Automated Laser Placement

- Process parameters optimized to enhance the production time & the composite cohesion
- 2 different means used (new one from tank#6)
- Total of 15 tanks produced

→ Boss design was adapted to the head trajectory (new liner from tank#5)

Tank #		ner		Таре	Stacking		
	Material	Туре	% CF	Matrix mate	model		
#C1	PA11	Hyphone	55	PA11	F - 74 layers		
#C2	PA11	Hyphone	55	PA11	F - 74 layers		
#C3	PA11	Hyphone	55	PA12	F - 74 layers		
#C4	PA11	Hyphone	57	PA12	G - 82 layers	1	
#C5	PA11	THOR	57	PA12	G - 82 layers		
#A6	PA11	THOR	57	PA12	G - 82 layers		
#A7	PA11	THOR	57	PA12	G - 82 layers		
#A8	PA11	THOR	57	PA12	G - 82 layers		
#A9	PA11	THOR	57	PA12	G - 82 layers		
#A10	PA11	THOR	57	PA12	G - 82 layers		
#A11	PA11	THOR	57	PA12	G - 82 layers		
#A12	PA11	THOR	57	PA11	G - 82 layers		
#A13	PA11	THOR	57	PA11	G - 82 layers		
#A14	PA11	THOR	57	PA11	G - 82 layers		
#A15	PA11	THOR	57	PA11	G - 82 layers		
Laser Cotos Previously Applied Material View Consolidation Previously Applied Material							
						-	

FORVIA

EUROPEAN PARTNERSHIP

faurecia

The project results - WP5

Clean Hydrogen Partnership

Testing & validation

RINA-CSM

- Burst, ASR, ATPC & ETPC testing devices
- 7 burst tests done •
 - 1 burst on tank equiped with strain gages
 - 1575b never reached, with burst always in the dome
 - \rightarrow No acceptance to perform H2 tests
- ASR tests on 2 tanks (last one still on going)
- ATPC test stopped at 1836 cycles ٠
- ETPC test on going
- \rightarrow Good first experience on testing for pressure vessels

Tapes characterization CETIM

- New tools developed to characterize tapes ٠
- Specifications for tapes more complete

Tank #	Test target	Results	
#C1	Burst 1575b	NOK - 738,3b	
#C2	ASR + Burst	NOK - 350b	
#C3	Burst 1575b	No test	
#C4	Burst 1575b	NOK - 1466,3b	
#C5	Burst 1575b	NOK - 1476,2b	
#A6	Burst 1575b	NOK - 1250b	
#A7	ATPC- 22kcycles RT	NOK - 1836 cycles	
#A8	ASR & Burst	Ongoing	
#A9	Burst 1575b	NOK - 1198b	
#A10	ETPC	Canceled	
#A11	H2 fuelling/defueling	No H2 tests	
#A12	Burst 1575b	NOK - 1371b	
#A13	Bone fire tests	No H2 tests	
#A14	Bone fire tests	No H2 tests	
#A15	Bone fire tests	No H2 tests	

cetim

FORVIA

faurecia

Co-funded by he European Union

The project results - WP5

Clean Hydrogen

Partnership

Safety & fire characterisation CNRS

Develop a numerical approach to predict fire resistance of tanks

- Development of testing means to measure mechanical performance of composite in fire
- Model developed at tank scale with new measured data and material degradation factors

\rightarrow No full correlation possible as no bone fire tests were performed

70

60

50

40

30

20

70

60

50

500

500

cetim

THOR - 826262

The project results - WP5

FLIR

FORVIA

EUROPEAN PARTNERSHIP

faurecia

Optical fiber (OF) as fire sensor *NTNU* Use of **Optical fiber grid** as safety device on fire

- OF integrated to a TypeV cylinder
- OF can measure local temperature
 - Visual mapping of temperatures for monito and decision making
- Flame localization is reliable

European

Hydroger

- OF withstanded 17' in direct flame
- Flame localization well positioned
- For accurate temperature value in flame, a higher-cost sensor is needed

100

OAirLiquide RIA <sirris ONTNU (Cetim

Co-funded by

the European Union

200 300 Axial position, mm 400

THOR - 826262

The project results - WP6

Tank recycling

CETIM-GE

Define the recycling process and the recycled products coming from thermoplastic tanks

- Selection of the delamination process
 - Hobbing has been selected
- Several recycled composite ratio tested to obtain thermoplastic sheets reinforced with carbon fiber
 - Sheets to be used for final application
 - Tested for 2 & 3 mm thickness

→ Bending performance (with 37 % PA11 with 37% CF) are closed to current SMC

- Density 1,25
- ➢ 150 to 180 MPA bending

Trials with different fiber ratios

58%vol FC = tape only

47%vol FC = tape + liner

cetim

EUROPEAN PARTNERSHIP

FORVIA

faurecia

The project results - WP6

(cetim

Mass production manufacturing Faurecia

Define **a process and recycled product** coming from thermoplastic with big thickness tanks

- Shop floor simulation for the manufacturing means installation
- Process flow chart estimated
- Cost calculation for a tank
- → Target of 400 €/kg can be achieved, but thermoplastic tapes reinforced with carbon fibers is the key elements for the price of the tank

FORVIA

faurecia

(cetim

A warm thank you to the FCH2-JU & Clean H2 JTI team for their support Another one for the consortium team

Technical side

- The Thermoplastic reinforced with carbon fiber can be used for high pressure gaseous H2 storage
 → Further R&D developments on mono material Thermoplastic tank reinforced with carbon fiber are needed
- Clean H2 tanks price target can be achieved

→ Price of the tapes is the major part of the total price. Thermo-plastic tapes reinforced with carbon fibers must become more competitive

FORVIA

faurecia

OAirLiquide RIA ≤ sirris □ NTNU (cetimentary)

Thanks for your attention

EUROPEAN PARTNERSHIP

#EUResearchDays #PRD2022 #CleanHydrogen