Thermo plastic Hydrogen tank

 Optimized \& Recyclable```
THOR
```

Denis RAGOT
FAURECIA
https://thor-fch2.eu/
denis.ragot@forvia.com
$\stackrel{* *}{\vdots+{ }^{*}}$


Strengthening of the European supply chain for compressed storage systems for transport applications

Coordinator: FAURECIA
Speaker: Denis RAGOT

$\qquad$

## Call reminder:

2,7 M€ - RIA

- Prepare the H 2 market increase for compressed Hydrogen tanks
- Broaden the number of players (tier1 \& 2 suppliers) for high pressure H2 vessels
- Decrease the storage costs and increase the performances of the tanks


## Consortium response:

2,85 M€, 36+9 months

- Propose a new thermoplastic $\mathbf{H 2}$ tank technology to allow the recyclability
$>$ Solution which could be used for transportation
- Investigate the thermo plastic technology to ensure that it could be applied for high pressure H 2 storage systems
- Estimate the manufacturing plant to respond to a 30,000 tanks per year

Week

## Industrial \& Technical partners



## Research partners

- SIRRIS, Belgium
- Modelling, winding definition and optimization
- NTNU, Norway
- Optical fiber instrumentation, data analysis
- CNRS - PPRIME, France
- Thermomechanical modelling and material behaviour in fire
- CETIM Grand Est, France
- Recycling process
- RINA-CSM, Italy
- Testing facilities of tanksNTNU (cetim Cirs) (cetim
Clean Hydrogen Partnership




## Technical side

- Thermoplastic solution was not used for high pressure gaseous H 2 storage
- Materials had to be selected (PA11 \& PA12 tapes with PA11 liners)
- 6 different tapes used
- Design to be adapted (based on a 63l inner volume tank, 2 type of liners)
- Winding process with tow preg to be used


## Project run out

- CO2 issues
- COvid has slowed down the project
- COvess, which was initialy in the Consortium, decided to leave the project
- Consortium had to redo completly the work and the material selection
-> +9 months accepted by Project Officer



## Hydrogen

## Tank design, modeling

## SIRRIS

- Woundsim \& Abaqus used for the winding pattern \& bosses optimization
- Correlation with iterative experimental results has shown that out-of-plane stiffness value is of prime importance to predict the burst value and the failure mode (also seen with CETIM software Optitank)
- New design was optimized to respect the expected performance (1575 Bars minimum burst pressure)


Boss optimization


FORVIA
faurecia
$\qquad$

## European

## Hydrogen

## Tank manufacturing

CETIM
Process: Automated Laser Placement

- Process parameters optimized to enhance the production time \& the composite cohesion
- 2 different means used (new one from tank\#6)
- Total of 15 tanks produced
$\rightarrow$ Boss design was adapted to the head trajectory (new liner from tank\#5)

The project results - WP4

| Tank \# | Liner |  | Tape |  | Stacking model |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Material | Type | \% CF | Matrix mate |  |
| \#C1 | PA11 | Hyphone | 55 | PA11 | F-74 layers |
| \#C2 | PA11 | Hyphone | 55 | PA11 | F-74 layers |
| \#C3 | PA11 | Hyphone | 55 | PA12 | F-74 layers |
| \#C4 | PA11 | Hyphone | 57 | PA12 | G-82 layers |
| \#C5 | PA11 | THOR | 57 | PA12 | G-82 layers |
| \#A6 | PA11 | THOR | 57 | PA12 | G-82 layers |
| \#A7 | PA11 | THOR | 57 | PA12 | G-82 layers |
| \#A8 | PA11 | THOR | 57 | PA12 | G-82 layers |
| \#A9 | PA11 | THOR | 57 | PA12 | G-82 layers |
| \#A10 | PA11 | THOR | 57 | PA12 | G-82 layers |
| \#A11 | PA11 | THOR | 57 | PA12 | G-82 layers |
| \#A12 | PA11 | THOR | 57 | PA11 | G-82 layers |
| \#A13 | PA11 | THOR | 57 | PA11 | G-82 layers |
| \#A14 | PA11 | THOR | 57 | PA11 | G-82 layers |
| \#A15 | PA11 | THOR | 57 | PA11 | G-82 layers |





## European

Hydrogen

## Testing \& validation <br> RINA-CSM

Burst, ASR, ATPC \& ETPC testing devices

- 7 burst tests done
- 1 burst on tank equiped with strain gages
- 1575b never reached, with burst always in the dome
$\rightarrow$ No acceptance to perform H 2 tests
- ASR tests on 2 tanks (last one still on going)
- ATPC test stopped at 1836 cycles
- ETPC test on going
$\rightarrow$ Good first experience on testing for pressure vessels


## Tapes characterization <br> CETIM

- New tools developed to characterize tapes
- Specifications for tapes more complete
$\mathrm{Rl} / \mathrm{R}$ istrisDTNU
(ctim
©ins) (ctim
Co-funded by
the European Union


Use of Optical fiber grid as safety device on fire


- OF integrated to a TypeV cylinder
- OF can measure local temperature
- Visual mapping of temperatures for monito and decision making
- Flame localization is reliable
- OF withstanded 17' in direct flame
- Flame localization well positioned
- For accurate temperature value in flame, a higher-cost sensor is needed







## European

## Hydrogen

 \&
## Tank recycling

CETIM-GE
Define the recycling process and the recycled products coming from thermoplastic tanks

- Selection of the delamination process
- Hobbing has been selected
- Several recycled composite ratio tested to obtain thermoplastic sheets reinforced with carbon fiber
- Sheets to be used for final application
- Tested for 2 \& 3 mm thickness
$\rightarrow$ Bending performance (with 37 \% PA11 with $37 \%$ CF) are closed to current SMC
> Density 1,25
$>150$ to 180 MPA bending


Ofirliquide
FORVIA faurecia

Pilot line in Cetim Grand Est


EUROPEAN PARTNERSHIP

RIV ${ }^{2}$ sirris


NTNU (cetim


Co-funded by
the European Union

- $+{ }^{-1}$


## Mass production manufacturing Faurecia

 Define a process and recycled product coming from thermoplastic with big thickness tanks- Shop floor simulation for the manufacturing means installation
- Process flow chart estimated
- Cost calculation for a tank
$\rightarrow$ Target of $400 € / \mathrm{kg}$ can be achieved, but thermoplastic tapes reinforced with carbon fibers is the key elements for the price of the tank



## A warm thank you to the FCH2-JU \& Clean H2 JTI team for their support

## Another one for the consortium team

## Technical side

- The Thermoplastic reinforced with carbon fiber can be used for high pressure gaseous $\mathbf{H} 2$ storage
$\rightarrow$ Further R\&D developments on mono material Thermoplastic tank reinforced with carbon fiber are needed
- Clean H2 tanks price target can be achieved
$\rightarrow$ Price of the tapes is the major part of the total price. Thermo-plastic tapes reinforced with carbon fibers must become more competitiveNTNU (cetim
$\qquad$


## Thanks for your attention

## European Hydrogen Week

