Premium Act (256776)

Second Act (621216)

Sylvie Escribano CEA/LITEN

www.mrtfuelcell.polimi.it/premiumact.html

www.second-act.eu (in preparation)

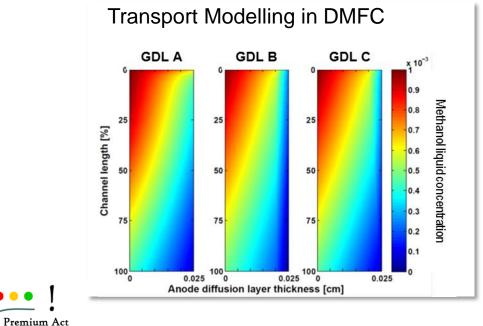
Premium Act OVERVIEW

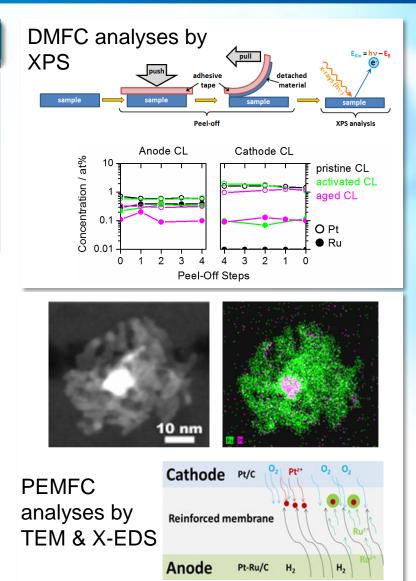
- PREdictive Modelling for Innovative Unit Management and ACcelerated Testing procedures of PEFC
- AIP SP1-JTI-FCH.2009.3.1 Fundamentals of fuel cell degradation for stationary power application
- 01/03/2009 to 28/02/2014
- Total budget: 5 370 190 € FCH JU contribution: 2 513 251 €

- Overall purpose of project: Improvement of stationary PEFC systems durability (40000h required!) → A reliable method to predict system lifetime, benchmark components and improve operating strategies
- 100% (project ended)

Premium Act TARGETS AND ACHIEVEMENTS

Status before project	AIP target	Project Target
Limited knowledge	• Basic research to	Improvement of degradation
of degradation	better understand	understanding (advanced in-situ
mechanisms when	degradation/ failure	and ex-situ characterizations
related to different	mechanisms for	coupled with modelling for
fuels for stationary	different fuels and	mechanisms understanding)
applications	levels of power	Investigations conducted for 2 types
		of technologies & systems
European FC systems	 Critical parameters 	(Reformate and Direct Methanol)
durability lower than	and operating	 Ageing data at cell, stack & levels
the target of 40000	conditions	
hours		Identification of main parameters
	 Methodologies as 	enhancing or reducing degradation
	well as tools for	Development of specific accelerated
	modelling,	stress tests
	operational controls	Proposal of operating strategies and
	and diagnostics.	of lifetime prediction methodology

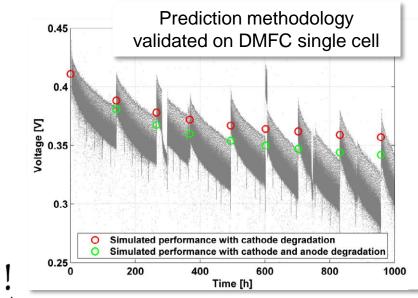

Premium Act


Premium Act TARGETS AND ACHIEVEMENTS

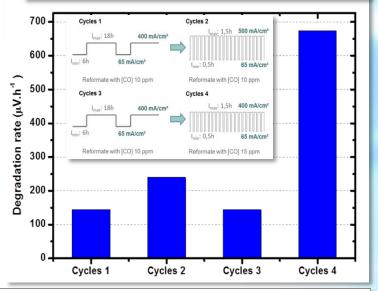
Achievements

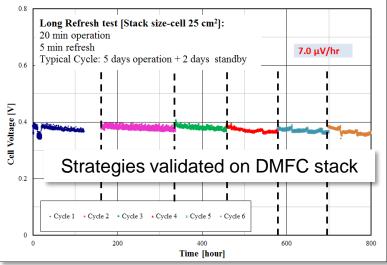
Analyses & Mechanisms

- Specific degradation mechanisms
- Non-reversible: *Pt and PtRu catalysts degradation related to local conditions*
- Reversible: *CO pollution in PEMFC; Anode CO2 accumulation in DMFC; Pt/Ru oxides formation in DMFC*



Premium Act TARGETS AND ACHIEVEMENTS


Achievements


Protocols & strategies

- <u>AccST protocols</u>: analysed in single cells and stacks for DMFC and reformate PEMFC.
- ightarrow Performance decay acceleration by ~ 5 to 7
- <u>A lifetime prediction methodology</u> including experiments and simulations
- <u>Operating strategies</u> addressing reversible degradation

AccST validated on a PEMFC stack

Premium Act

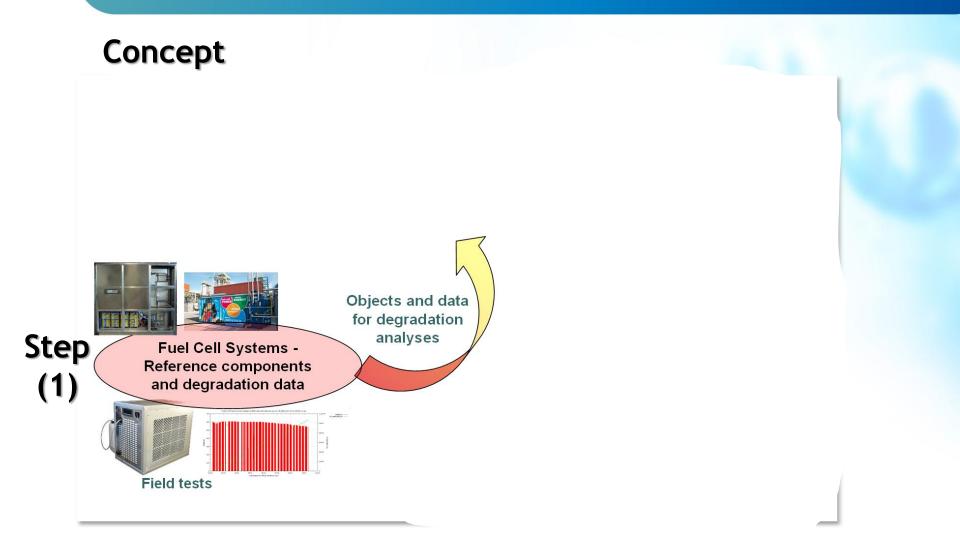
SYNERGIES WITH OTHER PROJECTS AND INITIATIVES

- Interaction of Italian partners with the national **Real FC** project with regard to experimental data and testing methodology
- Part of methodology and knowledge used for experimental and modelling investigations from **DECODE**
- Common workshop with two FCH-JU projects on stationary application: STAYERS & KEEPEMALIVE

"Degradation of PEM Fuel Cells" (held by Sintef - Oslo - April 2013) → Presentation of Premium Act PEMFC and DMFC degradation studies

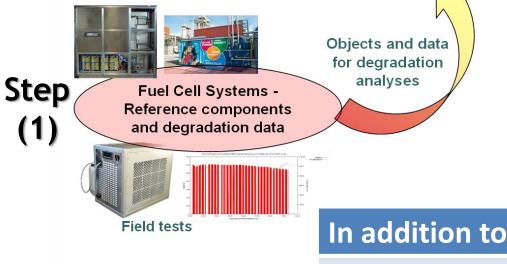
starting point of Second Act proposal

https://www.sintef.no/Projectweb/STAYERS/News--Events/Degradation-of-PEM-Fuel-Cells--experience-exchange-and-discussions/


Second Act OVERVIEW

- Simulation, statistics and Experiments Coupled to develop
 Optimized aNd Durable µCHP systems using ACcelerated Tests
- AIP SP1-JTI-FCH.2013.3.1 Improving understanding of cell & stack degradation mechanisms using advanced testing techniques, and developments to achieve cost reduction and lifetime enhancements for Stationary Fuel Cell power and CHP systems

- 01/05/2014 to 30/04/2017
- Total budget: 4 643 707 € FCH JU contribution: 2 523 254 €
- Overall purpose of project: to improve understanding of stack degradation and propose durability improvements for µCHP systems using PEMFC or DMFC.
- 15% completed

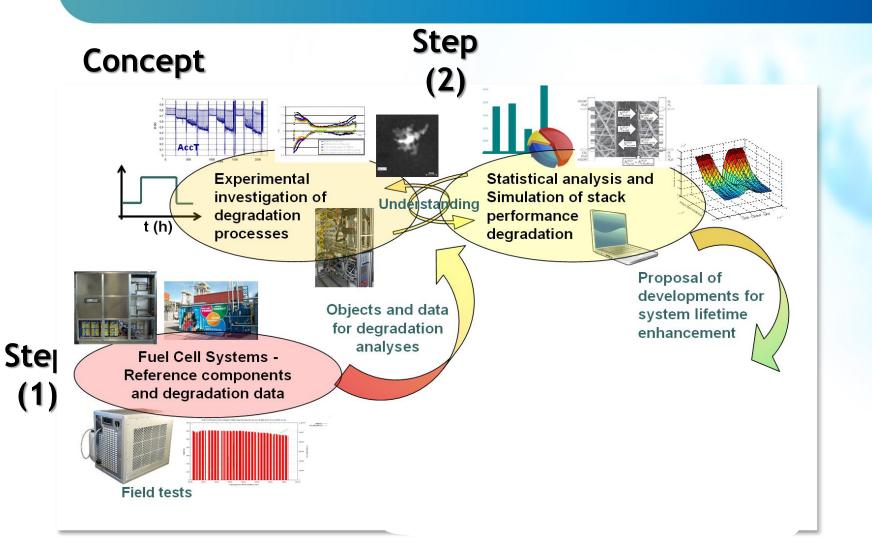


* Similar link with projects Stayers & Keepemalive for pure H2 PEMFC

Concept

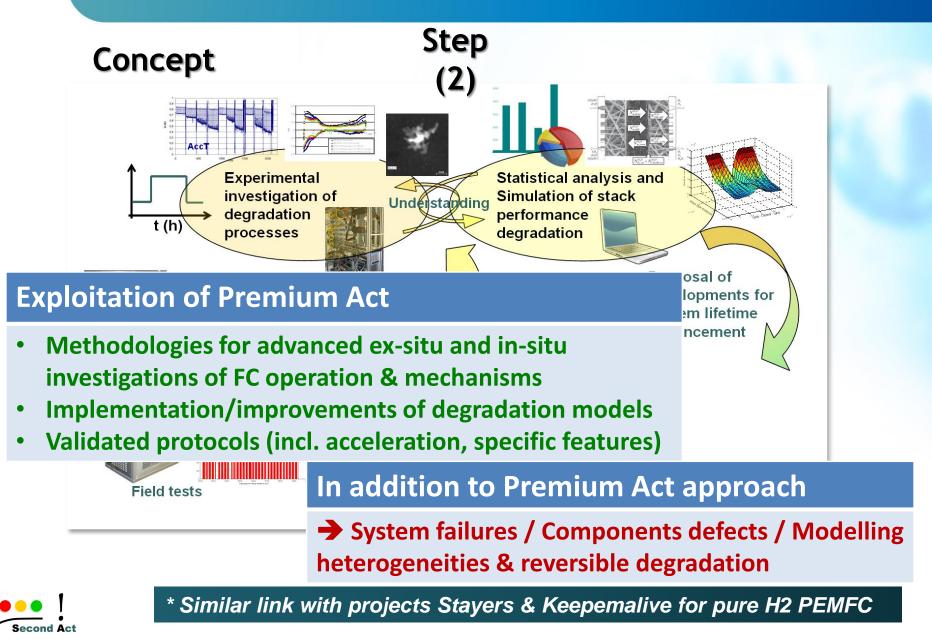
Exploitation of Premium Act

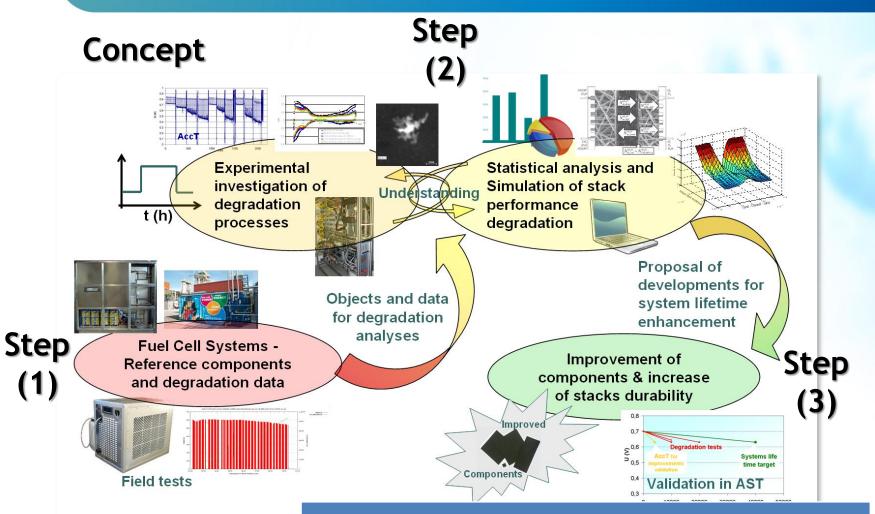
- Ageing data for statistical analyses
- Qualified components, stack, system (for DMFC and Reformate PEMFC)



In addition to Premium Act approach

Pure H2 PEMFC systems




* Similar link with projects Stayers & Keepemalive for pure H2 PEMFC

* Similar link with projects Stayers & Keepemalive for pure H2 PEMFC

In addition to Premium Act approach

➔ Proposal & Validation of improvements vs. applications specific durability requirements

RISKS AND MITIGATION

- 2 main targets for 3 technologies (DMFC; pure H2 & Reformate PEMFC)
 - 1. Better understanding of cell and stack degradation
 - 2. Demonstrating lifetime **improvements** (increased tolerance to applications' relevant cycling or operating modes through stack components modifications)
- Related main risks
 - Quantification of degradation only partial

 \rightarrow additional analyses or models validation

 Difficulty in implementing proposed modifications / Durability improvement lower than expected /

 \rightarrow Iterative process/selection & implementation of another core modification

Acknowledgements

Thank you for your attention

Additional slides removed from initial template

DISSEMINATION ACTIVITIES

- Organized workshop: "Characterization and quantification of MEA degradation processes", September 2012 in Grenoble, France
- **19 papers** submitted & **35 presentations** in international conferences or workshops

EXPLOITATION PLAN/EXPECTED IMPACT

For the 3 Industry partners involved (IRD - ICI - SOPRANO)

- Results of interest related to FC system
 information: how to operate
 the systems / parameters degrading stack / core components
- Type of exploitation planned

 application of mitigation strategies / Modification of system components or monitoring to enhance lifetime
- Impact expected
 -> systems more competitive on the commercial level
 thanks to better reliability; use for other applications

HORIZONTAL ACTIVITIES

- Training & education
 - Involvement of students up to PhD level by R&D partners
 - Yearly summer school between TU Graz and National Yokohama University
- Project work in safety, regulations, codes, standards, general public awareness
 - TC105/WG11 (Single cell test protocols): SECOND ACT partners are involved in this international Fuel Cell technology committee.
 Possible to promote the project inside this group and investigate about the possibility to organize sessions about Fuel Cell degradation
 - IEA Advanced Fuel Cells Implementing Agreement Annex 25 (Stationary Fuel Cells): CEA and TUG are members of Annex 25 and can disseminate key aspects of Second Act in Annex 25 workshops.
 - EXPO2015 in Milano: dissemination event to general public and end-users (possibly including demonstrating activities)

