

(GA #303449)

Anders Ødegård

- STAble and low cost Manufactured bipolar plates for PEM Fuel Cells
- July 1st 2012 to June 30th 2015, 36 months
- Total Budget € 5 223 807, FCH JU funding € 2 576 505 Research Council of Norway ~€ 210 000 (to SINTEF)
- Partners: SINTEF (Norway)

- Innovation in Motion

- Teer Coatings Ltd, Miba Coatings Group (United Kingdom)
- ElringKlinger AG (Germany)
- Fraunhofer ISE (Germany)
- University of Birmingham (United Kingdom)

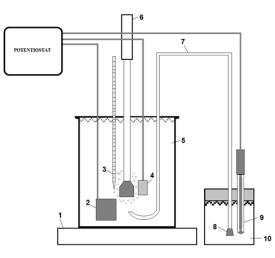
elringklinger

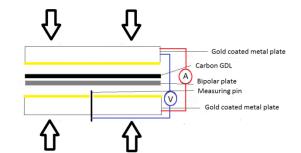
- Fronius International GmbH (Austria)

Project objectives and targets - AIP/MAIP

The main objective of STAMPEM is to develop durable coating materials for metal based bipolar plates, that can be mass produced for less than $2.5 \notin /kW$ of rated stack power at mass production volumes of 500 000 pieces annually.

Contributes to reaching the goals set within Application Area 1: Transportation & Refueling Infrastructure, by **reducing the cost** and **enhancing the stability** of the bipolar plates.

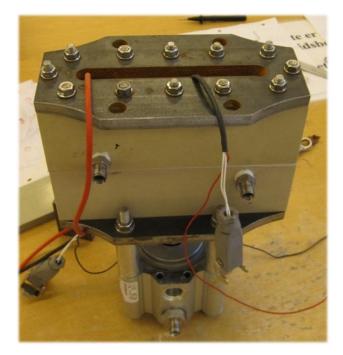

Images copyright project partners, 2013



roject main technical targets

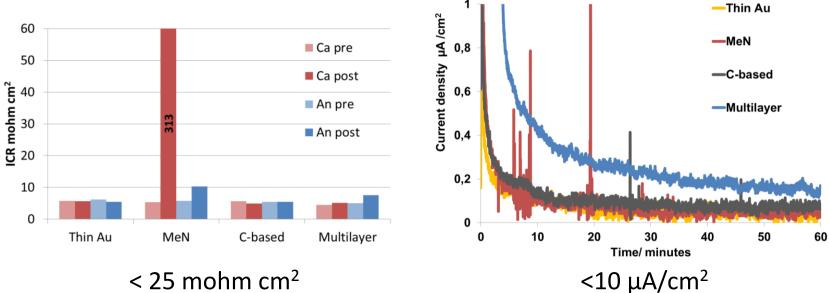
After extrapolated 10 000 hours from AST single cell testing:

- Contact resistance < 25 mohm cm²
- Corrosion resistance < 10 μ A/cm²



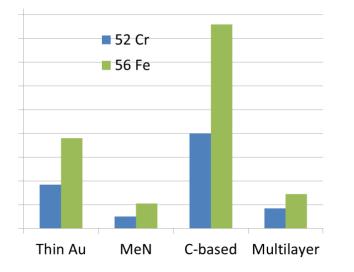
In-situ AST protocol

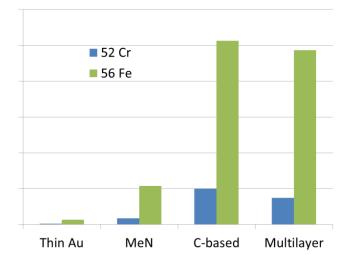
Accelerated BPP/coating degradation:


- 75° C and 100%rH hum
- MEA conditioning: 0.4 0.7 V cycling
- Cycling 0.4V OCV,
 20 min each for 100 hours
- Measure ICR before and after
- Ion analysis of water and MEA/GDL

Project Achievements I: ICR and corrosion

ICR at 150 N/cm² before and after in-situ fuel cell AST.


Corrosion currents at $0.8 V_{SHE} 1 \text{ mM H}_2 SO_4 80^{\circ} C$


< 25 mohm cm²

Project Achievements II: Ion release

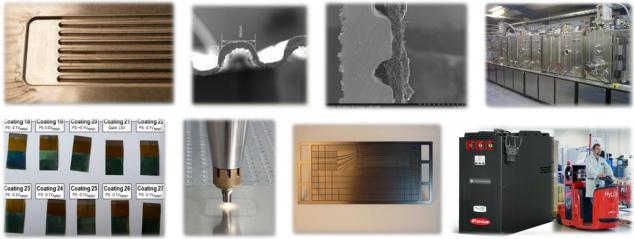
MEA/GDL

Anode effluent water

Evaluation of the progress towards the overall project objectives

AIP Specific Objectives/Expected Output per Topic/Call addressed by the project	Project Objectives & Targets	Timing (% of project duration passed)	Project Achievements - Current Status	Project Achievements - Expectation at the end of the project
Contact resistance < 25 mohm cm ² at relevant clamping pressures	< 25 mohm cm ² after 10 000 hours extrapolated from AST	45%	< 10 mohm cm ² at BoL and after 100 hours in-situ AST	< 25 mohm cm ² after 10 000 hours extrapolated from AST
Corrosion resistance < 10 μ A/cm ²	< 10 µA/cm ² after 10 000 hours extrapolated from AST	45%	< 1 µA/cm ² in 1 mM H2SO4 at 0.8 VSHE and 80 °C at BoL	< 10 µA/cm ² after 10 000 hours extrapolated from AST
Corrosion stability > 5,000 h	10 000 hours extrapolated from AST	45%	N/A (test not finalized)	10 000 hours extrapolated from AST
Costs (excluding taxes and levies) < 2.5 € /kW at 500,000 pieces annually	< 2.5 € /kW at 500,000 pieces annually	45%	N/A (test not finalized)	< 2.5 € /kW at 500,000 pieces annually

1. Development of a coating (alternative to gold) which withstands the stamping process


=> Major cost reduction compared to the post-coating process

Long term testing and verification
=> Cannot be sure about durability without in-situ operation
=> Real life operation vs. AST

Activities beyond coating development

- Stamping pre-coated vs pre-formed, ...
- Processing cleaning, coating, quality control, ...
- Testing ex-situ, in-situ, segmented, AST, ...
- Verifying full size cells, stacks and systems, costs

Images copyright project partners, 2013

•Cross-cutting and Dissemination Activities

- Contributing to further development of test protocols by applying, investigating and improving existing (AST) protocols for BPP
- 4 presentations at conferences/workshops so far, one publication to be submitted
- Open workshop to be organized at the end of the project
- •Exploitation and Post-Project Activities
 - Techno-economical assessment
 - Validation/operation of BPPs in systems continues post project life

•Recommendations towards the FCH JU Programme

• Verification and understanding of degradation in existing materials

