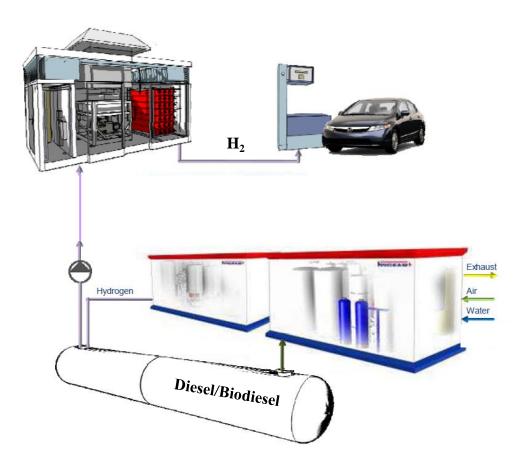


Programme Review Days 2012 Brussels, 28 & 29 November 2012

Stefan Martin German Aerospace Center/ Institute of Technical Thermodynamics

0. Project & Partnership description

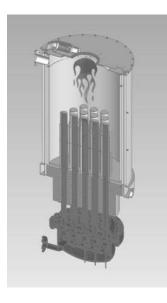

General Overview

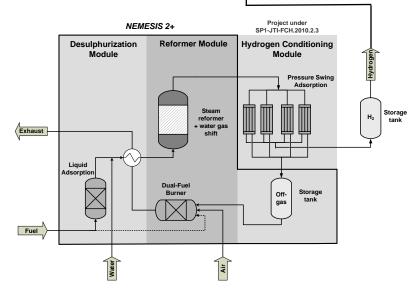
- New Method for Superior Integrated Hydrogen Generation System 2+
- Duration: 36 months (01/2012 12/2014)
- Total budget: € 3.393.062, FCH contribution: € 1.614.944
- Collaborative project, 7 beneficiaries (3 from industry, 3 from research, 1 SME)

No.	Participant Organisation Name	Short Name	Country
1	Deutsches Zentrum für Luft- und Raumfahrt e.V.	DLR	Germany
2	HyGear B.V.	HYG	The Netherlands
3	Johnson Matthey PLC.	JM	United Kingdom
4	Abengoa Hidrógeno, S.A.	AH	Spain
5	Abengoa Bioenergía San Roque, S.A.	ABSR	Spain
6	Centre for Research and Technology Hellas	APTL	Greece
7	Instituto Superior Técnico	IST	Portugal

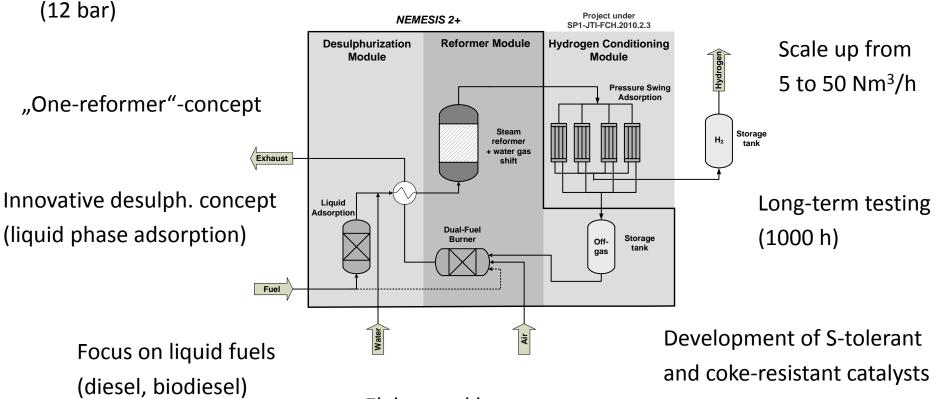
On-site hydrogen production at refuelling stations from diesel and biodiesel

1. Project achievements




Project Targets

- Development of a pre-commercial hydrogen generator (50 Nm³/h)
- Feedstock: diesel and biodiesel; steam reforming technology
- High overall system efficiency (> 70 %), stable long-term operation (1000 h), H₂-purity 5.0
- Reduction of hydrogen production costs (< 4 € per kg)



Pressurized steam reforming

Elaborated heat management

1. Project achievements

Testing procedures

Fuel characterization

- Diesel analysis according to EN 590
- Biodiesel analysis according to EN 14214
- Sulphur analysis of liquid fuels according to ASTM D5453 (ISO 20846)

Catalyst characterization

- Characterization of catalyst surface using in-house test procedure
- Analysis of coke and sulphur deposits on catalyst surface (in-house procedure)

Techno-economic Evaluation

• Life cycle assessment of S-reduced biodiesel according to ISO 14040 and directive 2009/28/EC

NEMESIS2+

1. Project achievements

Technical Accomplishments and Progress towards overall SoA

- WP 1 "Definition Phase": Fuels (diesel, biodiesel) characterized and supplied to partners, System Specification document agreed between partners.
- WP 2 "System simulation": Existing 50 Nm³/h system of HyGear based on natural gas implemented into Aspen Plus and validated with experimental data, Preliminary calculations carried out using diesel and biodiesel→ results provided to partners
- WP 3 "Liquid Desulphurization":

Promising regenerable sorbent material identified:

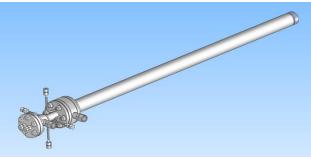
- Sulphur content < 2 ppm (<1 ppm) can be achieved for diesel (biodiesel)
- DeS process has no or negligible effect on the (bio)diesel properties of interest
- A relevant prototype will be designed and implemented

NEMESIS 2+

NEMESIS2+

* www.nemesis-project.eu

1. Project achievements


Technical Accomplishments and Progress towards overall SoA II

WP 4 "Catalyst Development": JM: Initial performance screening

 → Pt-group reforming catalysts identified with increased activity;
 IST: Construction and commissioning of WGS test-rig
 DLR: Test campaign with biodiesel finished → Optimum operating conditions identified.

- WP 5 "Reformer Module": HYG: Preliminary design studies based on current natural gas system, Single reformer tube sent to DLR → Mapping of operational window
 IST: CFD-modeling of burner and combustion chamber, preliminary testing of dual fuel burner (atomization tests, spray characterization)
- WP 6 "Prototype" and 7 "Techno-economic evaluation ": → Start in month 19
- WP 8 "Coordination": Public website*, 3 page-article in Nov. Issue of "International Innovation Report"

<u>Correlation of the project with the corresponding Application Area (as</u> <u>mentioned in MAIP/AIP documents):</u>

- Area addressed: "Hydrogen Production & Distribution"
- Aim: Develop a portfolio of sustainable hydrogen production, storage and distribution processes which can meet 10 % 20 % of the hydrogen demand for energy applications from carbon-free or lean energy sources by 2015.
- Approach: Demonstrate various sustainable hydrogen production and supply chains (ready for commercialization by 2013) + exploit synergies with Area "Transportation & Refuelling Infrastructure"
- Improve hydrogen production efficiency
- Enhance cost competiveness of renewable hydrogen production

Detailed project activities & results/achievements versus MAIP/AIP document targets

Expected output AIP Topic: "Development of fuel processing catalyst, modules and systems" Call: 2010	Objectives NEMESIS2+	Status at 30% of the project	Expected revised objectives
System efficiency (%): > 80 conversion efficiency (HHV H ₂ (5.0)/HHV fuel)	> 80	N/A (tests not finalized)	> 70
Electrical consumption < 0,1 kWh/(Nm ³ H ₂ , 10 bar)	< 0,1		< 0,1
System cost after 6 years (€): < 5.000 /(Nm³ H₂)	< 5.000	N/A (prototype not yet built)	< 5.000
Scalability (Nm³/h): 2 - 750	5-750	N/A (tests not finalized)	> 1.000 Nm ³ /h possible
Catalyst durability: Adding 5 ppm of H ₂ S to the feed results in a < 20 % decrease in hydrogen production + long-term catalyst stability	< 20 % decrease	< 2 % decrease over 12 hours	< 2 % proof long-term stability (1000 h)
		< 4 hours	
Availability/Recyclability: Catalyst Replaceable	< 4 hours	Recyclability to be	< 4 hours
within 4 hours, active metal recovery > 85 %	> 85 %	determined	> 85 %

Identify and comment on gaps/bottlenecks in RTD&D proposed by MAIP/AIP documents:

- Consider food-fuel competition
- Consider availability of different feedstock (biodiesel, bioethanol etc.) and regulatory framework

<u>Comments on priorities and topics possibly under/over-estimated in the AIPs</u> <u>in terms of technical challenge</u>

- Over-estimated: Conversion efficiency targets (\rightarrow Focus on H₂-production costs!)
- Under-estimated: Development of S-tolerant catalysts (→ more systematic approach! + use synergies between projects)

How project addresses and contributes to:

- Training and Education: Dissemination plan will be established at midterm including training and education events. Final workshop will be held at the end of the project → Present results to stakeholders and industry.
- Safety, Regulations, Codes and Standards: Improve in-house test procedures
- Dissemination & public awareness: 3-page article appeared in November Issue of *"International Innovation Report"*, public project website (www.nemesis-project.eu) has been launched in October
- Information on publications: Master thesis "biodiesel reforming at elevated pressures", poster presentation on national conference.

4. Enhancing cooperation and future perspectives

• <u>Technology Transfer / Collaborations</u>

- Synergy effect with Area "Transportation & Refuelling Infrastructure": Hydrogen conditioning module developed under topic SP1-JTI-FCH.2010.2.3 by partner HyGear will be integrated into the NEMESIS2+ prototype in the last six month of the project.
- <u>Project Future Perspectives</u>
 - Proposed future research approach and relevance
 - Decision on final process setup will be taken at midterm, Strategy of Risk sharing between different routes (i.e. development of liquid desulphurization and S-tolerant catalysts). So far no deviations from work plan.
 - Possible contribution to the future FCH JU Programme: HyGear is in close contact with Dutch Ministery of Infrastructure & Environment (in collaboration with the French, German, Swedish and Danish governments) of Ten-T hydrogen roll-out project

Thank you for your attention!

Contact details:

stefan.martin@dlr.de

Tel: +49711 6862 682