

NANOHy (Grant # 210092)

Novel Nanocomposites For Hydrogen Storage Applications 7th FP

Maximilian Fichtner Karlsruhe Institute of Technology (KIT) m.fichtner@kit.edu

Consortium

	Beneficiary name	Beneficiary short name	Country
1	Karlsruhe Institute of Technology	KIT	Germany
2	CNR-ISC Firenze	CNR	Italy
3	CNRS	CNRS	France
4	FutureCarbon GmbH	FC	Germany
5	Institutt for Energiteknikk	IFE	Norway
6	Max-Planck-Institut	MPI-KGF	Germany
7	NCSR Demokritos	NCSRD	Greece
8	University of Oslo	UniO	Norway
9	Korean Institute of Science and Technology	KIST	South Korea

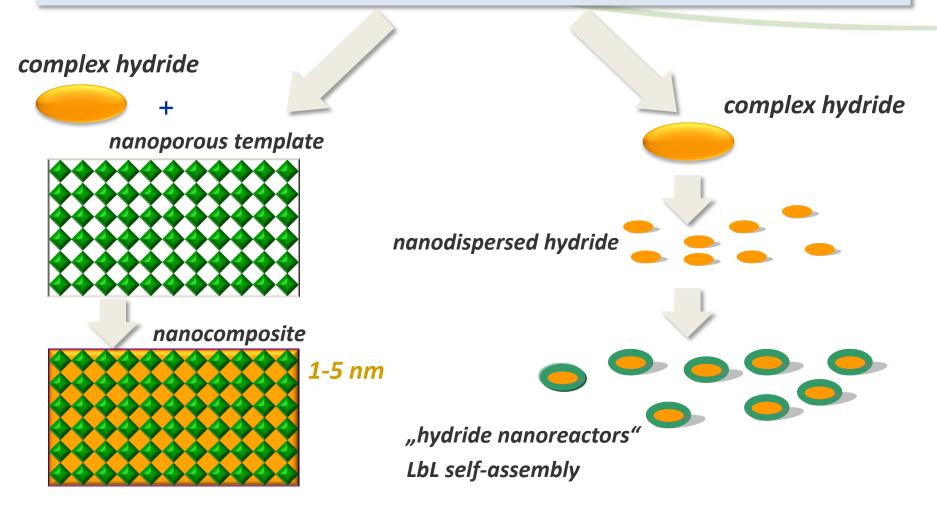
Beginning	Duration	End	Budget (M€)	Partners
Jan 1, 2008	48 months	Dec 31, 2011	3.1 Total 2.4 EC contrib	8 research 1 industry

Motivation

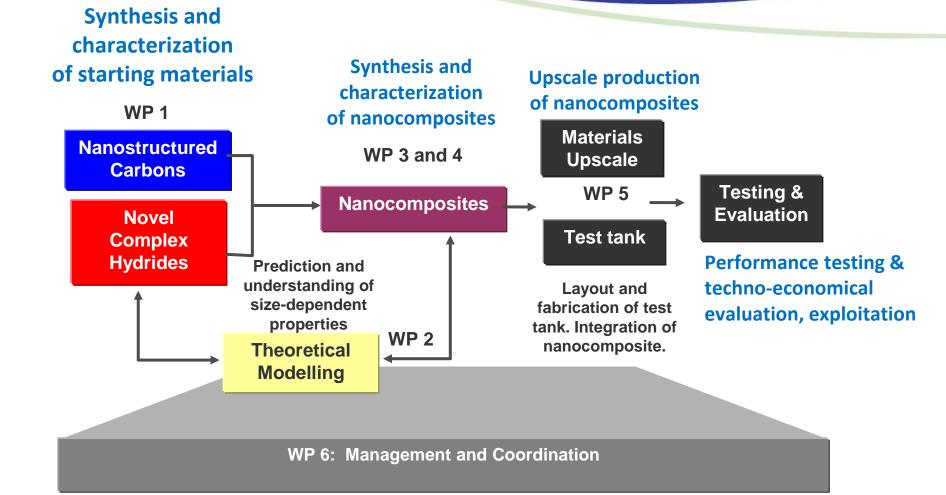
- Practical problems due to the limitations of the current storage systems (although high theoretical capacity exists).
- Lack of understanding of the properties of hydrides on the nanoscale.

Three major problems of H storage materials are adressed in NANOHy:

- Improvement of kinetics of the H exchange (lower working T, p)
- Tuning of thermodynamics (equilibrium properties)
- Safety (e.g. stable in air)

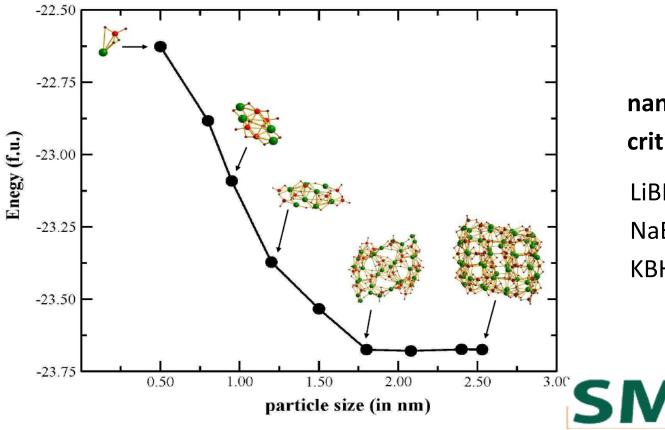


Parameter	Unit	Target
Particle size of nanodispersed complex hydrides	nm	< 5
Gravimetric density (ref. to materials weight) at 100-200°C	mass% H	> 8
Refuelling rate	g/s	0.5
Desorption temperature of H ₂	к	Lowered by > 50 K compared to ball-milled material; targeted temperatures are < 200 °C
Reaction enthalpy ($\Delta H_{reaction}$)	kJ/mol H ₂	30-40
Amount of material produced	kg	Batches of 0.5 kg - 1 kg in WP 5.
Reduction of desorbed diborane	%	> 90
Safety	-	No self-ignition in contact with air.
Tank	-	At least 1 laboratory test tank for 0.5-1 kg of material



Strategy and Approach

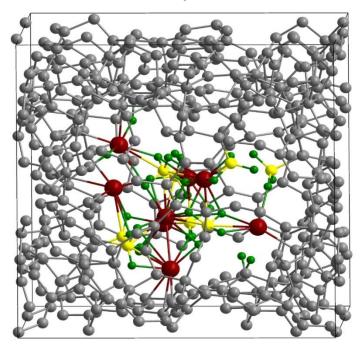
Make use of size effects and encapsulate the hydrides at the lower nanoscale

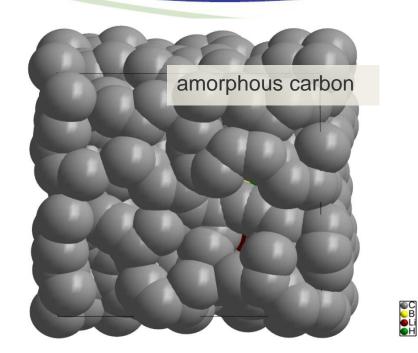


Project Plan

Modelling / Critical particle size of nanoclusters

nano-clusters critical size


LiBH ₄	1.75 nm
$NaBH_4$	1.35 nm
KBH ₄	1.80 nm



Modelling / LiBH₄ in 2 nm C pore

Structure of the material in the void is entirely different from bulk structure and from structure of particle in vacuum \rightarrow new effects !_____

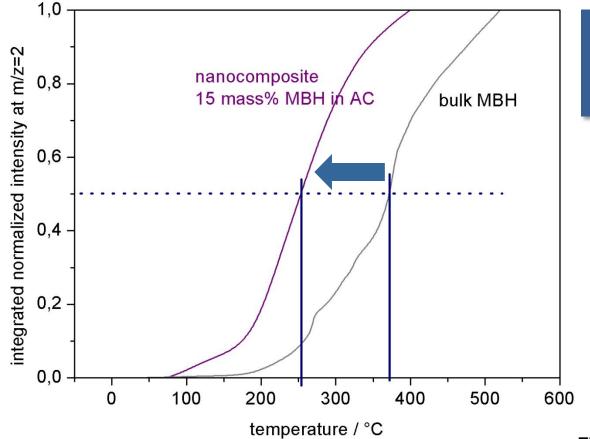
First published by: Vajeeston *et al.*, Nanotechnology (2009)

1000 $Mg(^{11}BD_4)_2 - AC1$ **SANS** $Mg(^{11}BD_4)_2$ bulk Mg(¹¹BD₄)₂ / AC1 100 (d) 10 1 Values subtracted: $Mg(^{11}BD_4)_2/AC1 - AC1$ to obtain only the powders signal 0.1 – 6 7 8 9 0.1 9 0.01 2 $q(A^{-1})$

Small Angle Neutron Scattering

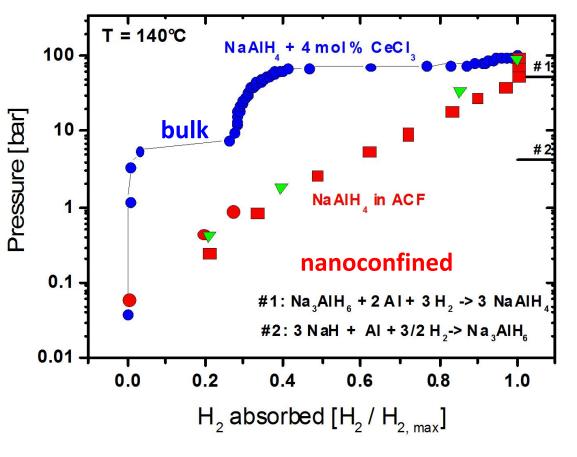
Mg(¹¹BD₄)₂/activated carbon

Mg(¹¹BD₄)₂ bulk powders


Subtracted intensities Mg(¹¹BD₄)₂

First direct proof of succesful infiltration of complex hydrides in < 2nm pores !

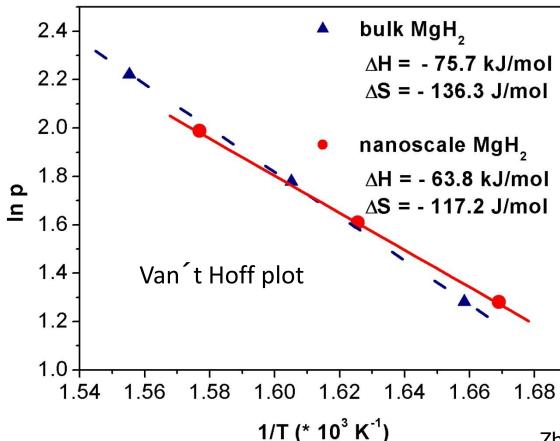
Sartori *et al.* Nanotechnology (2009) Sartori *et al.* J. Phys. Chem. (2010)


T shift of the H desorption by 120 K to lower temperatures !

Fichtner et al. Nanotechnology (2009)

Altered Thermodynamics 1

First experimental proof for modification of thermodynamics and reaction pathway of a nanoconfined complex hydride.

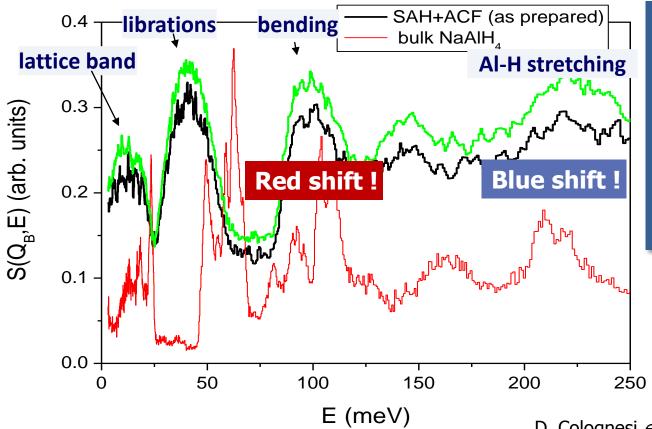

→ Fits to predictions of our modeling group.

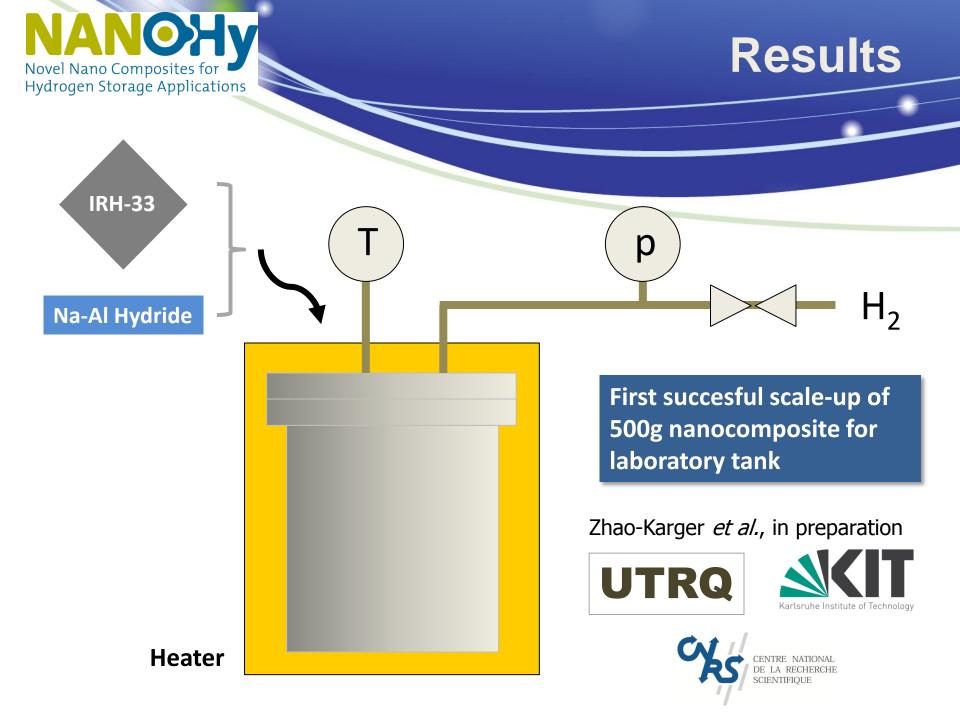
Fichtner *et al.*, MH (2008) Lohstroh*et al.* ChemPhysChem (2010)

Altered Thermodynamics 2

Changes: Δ H lowered by 11 kJ/mol Δ S lowered by 19 J/mol

First experimental proof for alteration of thermodynamics of nanoconfined MgH₂. Matches predictions of our theorists (UniO).

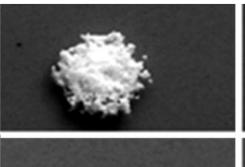

Zhao-Karger *et al.*, Chem.Comm. (2010)

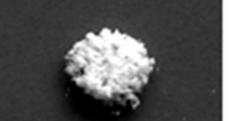

Mechanistic understanding

Vibrational properties \rightarrow INS, Raman

First INS study on nanoconfined hydrides. Explanation of macroscopic behaviour. Matches the predictions made by our theoreticians (UniO).

D. Colognesi et al., J. Phys. Chem. C (2011)





Safety

NaBH₄(PEI/PABA)₃

NaBH₄

First self-assembled and stable nanocoating of complex hydrides → Reactivity in air reduced

T. Borodina *et al.*, J. Mater. Chem (2010)

Max Planck Institute of Colloids and Interfaces

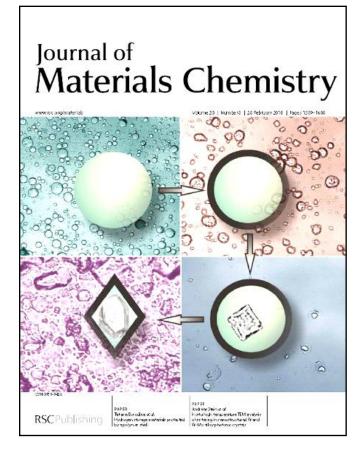
4 hs

0

12 hs

Project activities/results versus MAIP/AIP targets:

- Functional materials with altered thermodynamic and kinetic properties.
- No catalyst needed for reversibility
- Upscale of material is possible


Gaps/bottlenecks :

- Development of composites with high gravimetric density.
- Cost of raw materials.
- Materials properties: microporous scaffolds with higher pore volume needed to increase storage capacity.

Cross cutting issues

- Training: 3 students and 10 post docs (6 female) involved in the project
- Dissemination & public awareness : > 55 papers & conference contributions
- Two Workshops.
- Website www.nanohy.eu
- Succesful spin-off of infiltration technologies to battery technology.

Conclusion

- NANOHy has adressed several of the major problems of H storage.
- 9 partners from 6 different countries work on the encapsulation of complex hydrides at the lower nanoscale, the modelling and characterization of such materials and on their system integration.
- International leading activity.
- It is <u>possible</u> to infiltrate microporous scaffolds by complex hydrides and change their properties: Considerable <u>improvement of kinetics</u> observed. <u>Thermodynamic effects</u> were observed for the first time. Property changes were succesfully predicted by modeling.
- Not possible: change of the reaction path so that irreversible bulk hydrides become reversible → no improvement of reversible storage capacities by using these hydrides.
- <u>Reactivity</u> in air can be lowered by nanocoatings.
- First <u>upscale production</u> and lab tank development with hydride/AC composite.
- Spin off to other functional materials.

Perspectives

- NANOHy work has been done in close relation to IP NESSHy and several national activities (FuncHy, NANOMAT etc.).
- ► Most of the NANOHy partners are experts/representatives at the IEA-HIA Task 22 → close collaboration at the highest level with other international activities.
- Further development of scaffolds (and hydrides) is necessary to improve storage capacity.
- Ongoing spin-off of knowledge to other functional materials.
- Proposals on new functional materials (e.g. batteries) in upcoming EC calls.
- Already contacts to potential partners of a future consortium.

Acknowledgments

Thank you for your attention

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

