EGHOST

ESTABLISHING ECO-DESIGN GUIDELINES FOR HYDROGEN SYSTEMS AND TECHNOLOGIES

Project ID	101007166					
PRR 2025	Pillar 5 - Cross-cutting					
Call Topic	FCH-04-3-2020					
Project Total Costs	1 133 541.25					
Clean H ₂ JU Max. Contribution	998 991.25					
Project Period	01-01-2021 - 31-05-2024					
Coordinator Beneficiary	Fundacion IMDEA Energia, ES					
Beneficiaries	SYMBIO, SYMBIO FRANCE, THE INSTITUTE OF APPLIED ENERGY, FUNDACION PARA EL DESARROLLO DE LAS NUEVAS TECNOLOGIAS DEL HIDROGENO EN ARAGON, UNIVERZA V LJUBLJANI, COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES					

https://eghost.eu/

PROJECT AND GENERAL OBJECTIVES

eGHOST aims to establish the first milestone in the development of eco-design criteria in the European hydrogen sector by providing a framework for the eco-(re)design of mature and emerging products and by promotion of fuel cell hydrogen (FCH) technologies as a sustainable investment.

Two guidelines for specific fuel cell hydrogen (FCH) products will be prepared and the lessons learnt will be integrated into the eGHOST white book; a reference guidance book for any future eco-design project on FCH systems. It addresses the eco(re)design of mature products (proton-exchange membrane fuel cells) and those emerging with low technology readiness levels (solid oxide electrolysers) in such a way that sustainable design criteria can be incorporated from the earliest stages of product development.

Moreover, eGHOST will contribute to positioning FCH as a sustainable investment by developing the first preparatory study of a hydrogen product under the guiding principles of the Eco-design Directive.

NON-OUANTITATIVE OBJECTIVES

- eGHOST aimed to contribute to FCH systems' sustainability; eco-designed products will improve their sustainability performance.
- eGHOST aimed to contribute to social acceptance.; sustainable products are better accepted by end users and stakeholders, including civil society.

Achieved to dete

PROGRESS, MAIN ACHIEVEMENTS AND RESULTS

Two guidelines for specific FCH products (proton-exchange membrane fuel cells (PEMFC) and solid oxide electrolysis cell (SOEC) stacks) have been completed and the lessons learnt were integrated into the eGHOST White Book, a reference guidance book for any future eco-design project of FCH systems. Achievements included:

- Life cycle sustainability assessment of a PEMFC and SOEC stack.
- Evaluation of the PEMFC stack in accordance with the EU eco-design directive.
- Proposal for alternative design concepts for both PEMFC and SOEC stacks from a sustainability perspective.
- Prioritisation of product concepts as a function of the impact reduction goals.
- Issuing of methodological and technical eco-design guidelines for both PEMFC and SOEC stacks.

eGHOST has improved the understanding of FCH technologies as a sustainable investment under the EU Taxonomy. In addition, eGHOST has pioneered the development of a social life cycle assessment in hydrogen-related projects looking at sustainable-by-design technologies that minimise environmental, economic and social impacts from the product-design phase.

PROJECT TARGETS

Target source	Parameter	Unit	Target	by the project	achieved?	to date (by others)	SoA result
Project's own objectives	Eco-design guidelines	Number	2	2		N/A	N/A
	Cumulative environmental reduction	%	10	37-86 depending on product concept		18-44% carbon footprint reduction	2013
	Cumulative cost reduction	%	3	28-52 depending on product concepts		from 2.6 % reduction to 46% increment	2013
	Eco-efficiency improvement	%	10	>100 for all product concepts		N/A	N/A

