SH2E & eGHOST projects

Javier Dufour Professor, Rey Juan Carlos University Head of Systems Analysis Unit, IMDEA Energy

European Hydrogen Sustainability and Circularity Panel

Clean Hydrogen Partnership

Co-funded by the European Union SH2E

Clean Hydrogen Partnership This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research. The contents of this document are provided "AS IS". It reflects only the authors' view and the JU is not responsible for any use that may be made of the information it contains.

PROJECT OVERVIEW

Participant	Country	
Fundación IMDEA Energía (IMDEA Energy)	Spain	
GreenDelta GmbH (GD)	Germany	
Forschungszentrum Jülich GmbH (FZJ)	Germany	
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)	France	
Fundación para el Desarrollo de las Nuevas Tecnologías del Hidrógeno en Aragón (FHa)	Spain	
Symbio (SYM)	France	
Institute of Applied Energy (IAE)	Japan	

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

PROJECT SUMMARY

- To provide a well-defined, validated and practical framework for LCSA of FCH systems.
- To facilitate robust decision-making processes in the field of FCH by adding sustainability criteria to the characterisation and benchmarking of FCH systems.
- Development and application of specific guidelines for the environmental, economic and social life cycle assessment of FCH systems, and their consistent integration into a sound LCSA framework.

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

FCH-LCSA GUIDELINES

- I document of FCH-LCA guidelines
 - 1 material criticality indicator
 - 1 document of FCH-LCC guidelines
- I document of FCH-SLCA guidelines
- I document of FCH-LCSA guidelines

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

SH2E

SH2E LCSA guidelines

GEN	IER	AL IN	IFORMATION	14
H		to use	e this document	14
GUI SYS		NCE (MS	ON PERFORMING LIFE CYCLE SUSTAINABILITY ASSESSMENT OF FOR	2H 16
1.	I	ntrodu	uction	16
2.	(Goal c	of the Life Cycle Sustainability Assessment	17
3.	S	Scope	of the Life Cycle Sustainability Assessment	20
3.	1	Мос	delling approach	20
	3.1	.1	Prospectivity	20
	3.1	.2	Consequentiality	22
	3.1	.3	Spatial scale	23
3.	2	Fun	ctional unit	24
3.	3	Sys	tem boundaries	30
	3.3	.1	Capital goods	36
	3.3	.2	Equipment end-of-life	38
3.	4	Mul	ti-functionality	39
3.	5	Mat	eriality assessment and stakeholder engagement	44
3.	6	Fina	al remark	46
4.	L	ife C	ycle Inventory	46
4.	1	Acti	vity and intensity	46
4.	2	Data	a collection	47
4.	3	Data	a sources and availability	47
4.	4	Data	a quality	48
4.	5	Data	a verification and validation	50
5.	L	ife C	ycle Impact Assessment	51
5.	1	Eva	luation methods	52
5.	2	Inte	gration	53

6.	In	terpretation and final remarks5	56
6.1		Sensitivity and uncertainty analysis	57
6.2		Reporting	59
REFE	RE	NCES	30
ANNE electr	EX oly:	1 - Life cycle assessment of Power-to-Syngas: comparing high-temperature c sis and steam methane reforming6	o- 35
ANNE	EX 2	2 - Complementing a prospective LCA by using a prospective background databas	se 71
ANNE hydro	EX ger	3 - Life Cycle Assessment of hydrogen for specialty glass production: comparir n heating with conventional natural gas heating	1g 73
ANNE	EX 4	4 - Supply chain modelling with different scopes in SLCA	30
	EX !	5 - Biogenic carbon emissions and storage	32
ANNE	EX	6 - PSILCA Worker hours database vs. raw values (direct quantification) databas	se 33
ANNE electr	EX oly:	7 - Application of the SH2E resource indicator to manufacturing of different wat sis cells	er 35
ANNE Cycle	EX Co	8 - Challenges of using future assumptions and different TRL technologies in Li sting of FCH technologies	fe }9

In Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the

European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research. The contents of this document are provided "AS IS". It reflects only the authors' view and the JU is not responsible for any use that may be made of the information it contains.

FCH-LCSA TOOL

44 FCH-LCA tool		×	G FCH-LCA tool
Prospectivity	6		System boundaries
Prospectivity			System boundaries
Is the technology modelled at early stage of development?			Please select the system boundaries of the hydrogen system to be modelled
⊖ Yes			⊖ Hydrogen production
⊖ No			⊖ Hydrogen use
			O Hydrogen production and use

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

FCH-LCSA TOOL

	CH-LCA tool – End-of-life	× Image: Select a template Please select a matching template and a top-category under which the template should be stored
 1 integrated FCH- LCA/LCC/SLCA/LCSA software tool 	End-of-life Please select the choice of end-of-life modelling approach O Cut-off approach Recycling approach Circular footprint formula O Other approach, please state:	Category Select a template: Cradle-to-gate 1 (hydrogen production) (kg of H ₂)
	< <u>B</u> ack <u>N</u> ext > <u>Finish</u> Cance	<u>Sack</u> <u>N</u> ext > <u>Finish</u> Cancel

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

FCH-LCSA TOOL

 1 integrated FCH-LCA/LCC/SLCA/LCSA software tool

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007163. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

eco-design Guidelines for Hydrogen Systems and Technologies

eghost

Participant	Country
IMDEA Energy Foundation (IMDEAE)	Spain
French Alternative Energies and Atomic Energy Commission (CEA)	France
University of Ljubljana (UL)	Slovenia
Institute of Applied Energy (IAE)	Japan
Fundación Hidrógeno Aragón (FHa)	Spain
Symbio (SYM)	France

Objectives

- First milestone in the eco-design of FCH products.
- First preparatory study under Eco-design Directive.
- To provide robust eco-design guidelines for FCH products at different levels of development.
- Towards sustainable-by-design FCH products.
- Specific guidelines for two different products: PEMFC stack and SOE stack.

Re-design methodology

E. Bargiacchi et al. Life cycle sustainability assessment of eco-designed solid oxide. II CIBIQ, Buenos Aires, 2023

ତ eGHOST

New product concepts

Original image courtesy of Advent Technologies A/S

Sustainability assessment of new product concepts

- Average reductions:
 - Short-term concept: 37%
 - Mid/Long-term concept: 54%
 - Optimistic concept: 75%
 - Disruptive concept: 86%
- Freshwater eutrophication is the only impact category where ecodesign actions increase the environmental impact (due to the platinum recycling process – TRL5)
- Climate change reductions:
 - Short-term concept: 31%
 - Mid/Long-term concept: 52%
 - Optimistic concept: 74%
 - Disruptive concept: 85%

Gramc et al (2024) https://doi.org/10.1016/j.ijhydene.2024.08.020

- Production scale increase (from 100 to 50,000 stacks/yr.) causes significant cost reductions:
 - from -93% (reference case) to -96% (disruptive concept)
- Cost reduction due to the ecodesign (at 10,000 stacks/year):
 - Short-term concept: 28%
 - Mid/Long-term concept: 37%
 - Optimistic concept: 49%
 - Disruptive concept: 52%

Sustainability assessment of new product concepts

Mass-based reduction (capital goods)

- Lesson 1. The push to the technical limits in the size of sub-components.
- Lesson 2. The push to technical limits at the technology level, including factors such as current density and power density.
- Lesson 3. Reduction applied to the usage of electrocatalyst materials precious versus non-precious.
- Lesson 4. Leading to increased efficiency and performance in FCH products (enhanced consumption at the operational phase).

Materials impacts and availability

Lesson 5. Implementation of EoL strategies.

Methodological aspects

- Lesson 6. Inclusion of the social component.
- Lesson 7. (S)SbD approach.
- Lesson 8. Prospective approach.
- Lesson 9. Continuous process and collaborative efforts.

Co-funded project by the European Union and the Clean Hydrogen Partnership. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the Clean Hydrogen Partnership. Neither the European Union nor the granting authority can be held responsible for them. The project is supported by the Clean Hydrogen Partnership and its members.

Acknowledgements:

SH2E and eGHOST consortia

European Commission / Clean Hydrogen Partnership Jure Gramc and Prof Mitja Mori for preparing some slides of this presentation

www.energy.imdea.org

SH2E & e GLOST projects

Javier Dufour IMDEA Energy Rey Juan Carlos University (javier.dufour@imdea.org)

www.energy.imdea.org