Fuel cells and hydrogen Joint undertaking

Program Review Days 2013

Introduction to portfolio of System development, Components, Materials and Operation Diagnostics projects — Energy R&D

Agenda Day 2 Morning

• Energy: • Transport: Q&A session		Introduction to portfolio of System development, Components, Materials and Operation Diagnostics projects Nikolaos Lymperopoulos, FCH JU Project Manager Carlos Navas, FCH JU Project Manager		
10:15 – 12:	15			Systems, Components and Materials Energy and Transport applications
	Development for		Materials Atkinson	SESSION 2 Materials Development for Hydrogen Storage and Portable applications Moderators: Andreas Dorda, Nikos Lymberopoulos
0:15-10:45				HYCOMP 'Enhanced design requirements and testing procedures for composite cylinders intended for the safe storage of hydrogen' Clemence De Villers, Air Liquide
0:45-11:15	Integrating degrade prediction models'	olid-Oxide Fuel dation effects into the characteristic data and the characteristic dat		SSH2S 'Fuel Cell Coupled Solid State Hydrogen Storage Tank' Marcello Barricco, University of Torino
1:15-11:45	application with rob	embranes for oust mechanical prop ersité de Montpellier II		HYPER 'Integrated hydrogen power packs for portable and other autonomous applications' <i>Juliet Kauffmann, Orion Innovations</i>
1:45-12:15	METSAPP 'Metal for stationary and m Niels Christiansen, To		echnology	DURAMET 'Improved durability and cost- effective components for new generation solid polymer electrolyte direct methanol fuel cells' <i>Antonino Arico, CNR-ITAE</i>

12:15 - 13:30

Lunch (Poster session)

	SESSION 1 Sustainable Hydrogen Production Moderators: Eden Mamut, Jean-Luc Delplancke	SESSION 2 Materials Development for Transport Moderators: Daria Vladikova, Joerg Wind	
13:30-14:00	COMETHY 'Compact multifuel-energy to hydrogen converter' Alberto Giaconia, ENEA	PEMICAN 'PEM with innovative low cost core for automotive application' Joel Pauchet, CEA	
14:00-14:30	RESELYSER 'Hydrogen from RES: pressurised alkaline electrolyser with high efficiency and wide operating range' Regine Reissner, DLR	STAMPEM 'Stable and low cost manufactured bipolar plates for PEM fuel cells' Anders ØDEGARD, SINTEF	

PARALLEL SESSIONS on Systems, Components and Materials

14:30 – 15:00	Coffee break & networking
15:00 – 15:30	Introduction to portfolio of Cross-Cutting projects

Cross-Cutting Issues: Guillaume Leduc, FCH JU Project Manager

Moderators: Guillaume Leduc, Carlos Navas

13:30 - 14:30

15:30-16:00	HYINDOOR 'Pre-normative research on safe indoor use of fuel cells and hydrogen systems' <i>Béatrice L'Hostis, Air Liquide</i>
16:00-16:30	FC-EUROGRID 'Evaluating the Performance of Fuel Cells in European Energy Supply Grids' Robert Steinberger-Wilckens, University of Birmingham
16:30-17:00	TEMONAS 'Technology monitoring and assessment' Peter Claassen, CLIMT

17:00 – 17:30	Concluding remarks - Scientific Committee members
17:30 – 18:00	Closure speech Bert de Colvenaer, FCH JU Executive Director

18:30 – 21:00 Cocktail dinner

Agenda Day 2 Afternoon

FCH for ENERGY: 89 projects

Technology Readiness Level, TRL

MAIP objectives

470 M€ FCH JU Budget distribution

AA2 Sustainable H2 Production MAIP objectives

- Develop cost-competitive, energy efficient, sustainable H2 production processes
- Various feedstocks
- Centralised (large scale) or distributed (small scale)
- Short-term: meet demand with mature technologies
- Longer-term: variety of technologies exploiting mainly renewable energy sources
- Hydrogen storage in gaseous, liquid and solid form

AA2 Sustainable H2 Production MAIP Coverage

Total R&D: 28 projects, 50.9M€

Low Cost, low Temp electrolysis: 4 projects, 6 M€

High temp electrolysers: 4 projects, 10.1 M€

Materials for PEM electrolysers: 2 projects, 4 M€

Biomass to H2: 1 project 2.2 M€

High Temp thermochemical water decomposition:

3 projects, 5.3 M€

Low temp H2 prod. processes: 4 projects, 8.1 M€

H2 Storage & Distribution: 3 projects, 4.5 M €

PNR & RCS: 2 projects, 2.9M €

Solid and Liquid Storage: 2 projects, 2.9 M €

Fuel processing, and gas purification: 3 projects, 4.9 M€

AA2 Sustainable H2 Production Main Technical Achievements

- Alkaline electrolysers with advanced membranes, η>80%, 1000 on/off cycles, 3,000€/(Nm3/hr)
- Development of large scale PEM electrolysers aiming for MW scale commercial units
- SOE electrodes operating at 700°C, 15% increased performance @ 0.9A/cm2
- Advanced catalysts for steam reforming at 400-550°C
- Thermochemical water splitting using solar energy: simulations pilot-scale demonstration
- 1-10kg/day H2 production from thermophilic fermentation of 2nd gen biomass
- 50% reduction of energy consumption for the liquefaction of hydrogen through up-scaling and optimisation.
- Improved designs and testing procedures for pressurised hydrogen tanks
- Hydrogen delivery with 400bar composite tanks
- 5 wt% H2 in MH tanks capable of 20NI/min for 2h, integrated with FC

RESelyser SSH2S

HYTIME PRIMO

DELIVERHY

SOL2H2

UNIfHY

AA3 Stationary CHP **Degradation & Materials MAIP objectives**

- Improve FC stack and BoP components
- R&D on:
 - Degradation and lifetime fundamentals
 - New and improved materials
 - Control and diagnostic tools
 - Components and sub-systems
 - Novel cell & stack architectures

Step change in endurance, robustness, durability, cost

AA3 Stationary CHP Degradation & Materials MAIP Coverage

Degradation: 11 projects, 21.1 M€

Materials development for cells, stacks and BoP:

5 projects, 10.1 M€

Next generation stack and cell design: 7 projects, 16.5 M€

Control and diagnostics: 4 projects, 6.7 M€

Improvement of components, 7 projects, 16.2 M€

Total for R&D: 34 projects, 70.6 M€

AA3 Stationary CHP Degradation & Materials Achievements

- 160-200°C PEM stacks with >20,000 h lifetime and η>45%
- Metal supported tubular SOFC with >40,000 h lifetime
- Triode architecture of SOFCs for x10 power factor and $\eta>55\%$
- AFCs with advanced stack design -> estimated 100MW @ 1,500-2,000 €/kW
- Ammonia fuelled 5kW AFCs for remote power
- Membranes and MEAs with improved mechanical properties
- Improving durability through accelerated testing procedures

CISTEM

EVOLVE EUREKA

DeMStack

MAESTRO

ALKAMONIA

AA4 Early Markets Portable Apps MAIP objectives

- Show the technology readiness of portable and micro FCs
- R&D on:
 - Reduced cost of FC
 - Improved efficiency & lifetime
 - Enhanced fuel supply, reduced H2 delivery costs (supply concepts, on-board reforming)

AA4 Early Markets Portable Apps MAIP Coverage

Fuel supply concepts for portables: 2 projects, 2.4 M€

Durability of micro FCs: 1 project, 1.5 M€

R&D of new portable FC systems: 4 projects, 7.7 M€

R&D of 1-10kW FC systems: 1 project, 2 M€

AA4 Early Markets Portable Apps Achievements

- Optimised DMFC components with reduced cross-over and 2x<degradation, PGM <0.5 mg cm2
- Miniaturised SOFCs & BoP for UAVs, resulting to doubling of flight times
- H2 based power packs (20kg/kW, 20l/kW))for portable apps
- Portable internal reforming methanol high temperature PEM

DURAMET

SUAV HYPER IRMFC

Conclusions: R&D in Energy

Comprehensive level of MAIP coverage

- Conventional and innovative H2 production concepts supported
- All FC technologies covered in CHP applications
- PEM, DMFC, SOFC in portables

The Future FCH 2 JU Objectives

- FCs for power production: η increase, cost reduction to levels competitive with conventional technologies
- H2 production: η increase, reduce capital cost
- Demonstrate the feasibility of using H2 to support the integration of RES into the energy systems

Thank you for your attention!

Further info:

- FCH JU: http://fch-ju.eu
- NEW-IG: http://www.new-ig.eu
- N.ERGHY: http://www.nerghy.eu