

fire COMP

FIRECOMP

Modelling the thermo-mechanical behaviour of high pressure vessel in composite materials when exposed to fire conditions

B. FUSTER Air Liquide

www.firecomp.info Beatrice.fuster@airliquide. com

Programme Review Days 2016 Brussels, 21-22 November

PROJECT OVERVIEW

fire **COMP**

Project Information				
Call topic	SP1-JTI-FCH.2012.5.4 - Pre-normative research on fire safety of pressure vessels in composite materials			
Grant agreement number	325329			
Application area (FP7) or Pillar (Horizon 2020)	FP7			
Start date	01/06/2013			
End date	31/05/2016			
Total budget (€)	3 543 498			
FCH JU contribution (€)	1 877 552			
Other contribution (€, source)				
Stage of implementation	100% project months elapsed vs total project duration, at date of November 1, 2016			
Partners	AIR LIQUIDE/HEXAGON/CNRS/INERIS/LMS SAMTECH/ University of Edinburgh/HSL/AYMING			

PROJECT SUMMARY

fire COMP

To exploit the benefits of hydrogen at large scale, in particular the storage of hydrogen must be secured.

Under normal working conditions a burst in service of a composite vessel is very unlikely, but when exposed to a fire the integrity of the composite material can be compromised and presents safety challenges.

=>The main objective of the FireComp project:

Better characterize the conditions that need to be achieved to avoid burst of composite vessels for CGH2 storage

- To this aim, Experimental work to improve the understanding
 - heat transfer mechanisms
 - loss of strength

coupled with

Modelling of the thermomechanical behaviour of the vessels

of composite high-pressure vessels in fire conditions.

• Both stationary and mobile applications considered : automotive application, transportable cylinders, bundles and tube trailers.

PROJECT PROGRESS/ACTIONS - Aspect 1 Fire COMP

Achievement to-date % stage of implement.	HT and degrad. mechanis ms Loss of Strength	25%	50%	75%	100%	Thermo- mecanical model
Aspect addressed			FCH	FCH JU Targets		
				Call topic	2017	2020
Model integrating the thermo- mechanical behaviour of the pressure vessel in	Understanding of the heat transfer and degradation mechanisms	Na	Need to define interaction between flame/com posite during typical fire,	Model integrating the thermo- mechanical behavior of the	Specific technolog y assessmen t tailored	Innovative safety strategies and safety solutions
fire conditions	Understanding of the loss of strength of the vessel	Na		pressure vessel in fire conditions		
	Thermo mechanical model on lab scale	Na	(exp. and modelling)			

PROJECT PROGRESS/ACTIONS - Aspect 1

fire **COMP**

Conclusions and Future steps:

When degradation rate of a specific composite material is known, FireComp has demonstated that it is possible to determine the remaining performance of structural material by modelling and calibration.

Degradation speed is mostly depending on resin behavior and type of fire If resin and fire exposure is unchanged, the degradation of the composite material will be about the same and independent of the diameter of the cylinder (mostly driven by degradation of the resin) and independent of the length of the cylinder. The structural lay up (fiber orientation) might influence marginally on the degradation rate, and not more than what can be adjusted for by a correction factor or within the safety margin defined.

If a specific composite material behavior in fire is known, the needs for performing fire test of composite cylinders are substantially reduced.

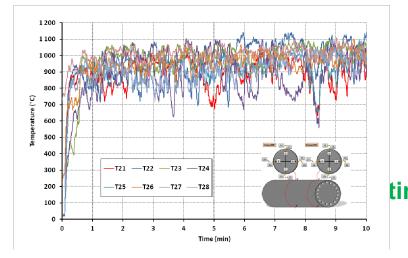
No need for new fire test if valve or Pressure Relief System is modified, as long as the new Pressure Relief System match the performance of the composite material in fire.

PROJECT PROGRESS/ACTIONS - Aspect 2 Fire COMP

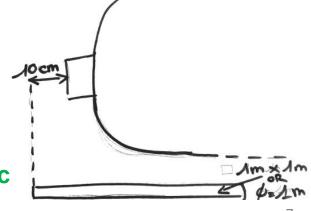
Achievement to-date % stage of implement.	Fire tests campaign Compar. with modelling 2	25%	50 %	75%	100%	Predictin model developp
Aspect addressed	Parameter (KPI)	Unit	SoA 2016	FCH Call topic	JU Target 2017	ts 2020
Experimental validation of the model and validation of the model	Definition of the test matrix and tests conditions	Na	Predictibility of numerical tools not sufficient, need of thermo- mechanical one, no clear definition of a breach criteria	Experimental validation of the predicting model	Develop predictin g model	Innovati ve
	Realization experimental test campaign at full scale	Na				safety strategi es and
	Comparison predicting model with exp. Results at full scale	Na				safety solution s

PROJECT PROGRESS/ACTIONS - Aspect 2

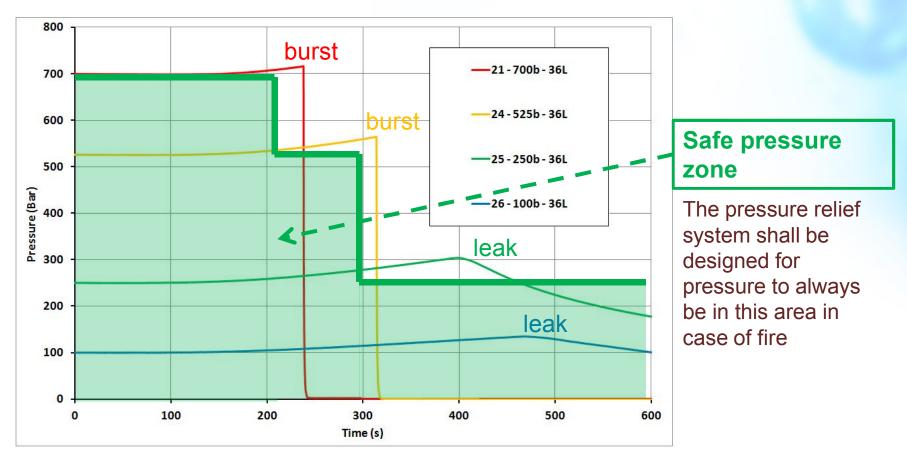
Fire COMP


According to the fire scenarios study performed in WP2, the cylinder should be submitted to an **engulfing bonfire test**.

The cylinder can be pressurised with **helium** or **nitrogen** instead of hydrogen.


All fire setups (pool fire, gas burners) are acceptable as long as they produce a satisfying heat flux – see next slide for **fire calibration**. An alternative setup using a gas burner is proposed in FireComp WP5.

If the cylinder is too big for an engulfing fire (*e.g.* length > 1.5 m), a partial exposition is possible as long as at least one of the domes is completely engulfed by the fire.



How to get information on the cylinder's performance? Fire COMP

The goal is to obtain a safe relief curve:

Area of the pressure vs. time in fire graph for which there is no burst of the cylinder

Example: bonfire tests results from WP5 – Hexagon 36 L cylinders

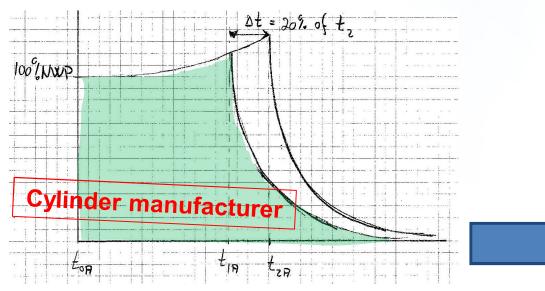
PROJECT PROGRESS/ACTIONS - Aspect 3 Fire COMP

Achievement to-date % stage of implement.	Risk method RCS mapping 2	5%	50%	75%	100%	Guidelines RCS recomm.	
			6.0	FCH JU Targets			
Aspect addressed	Parameter (KPI)	Unit	SoA 2016	Call topic	2017	2020	
Proposed approach for standardization -		Proposed approach for standard.	Compare policy and tech. Options	Assess against benchmark results			
Recommendation s for implementation in international standards	RCS recommendations and guidelines: Propose a set of test to be performed (the vessel alone, and devices) Propose to review referenced goal of standard (obtain safe pressure relief curves instead of just resist 2 min)	Na	testing each time there is a change of tank, PRD, or major component.	- Recommen dations for internation al standards	Including altern. and competing tech. Dissem. prog. results include towards RCS	Best practices and guidelines for various FCH appli . Allow deploymen ts	

PROJECT PROGRESS/ACTIONS - Aspect 2

□If a reliable pressure relief system is used, **composite cylinders have demonstrated** equal or better behaviour in fire comparable to metallic ones.

□ Fire scenarios might include both engulfing and localised fires, which should be taken into account in any risk analysis. A well designed fire detection and pressure release system can protect the composite cylinders against both types of fire.


A way of protecting the cylinder against punctual jet fires should also be used.

□ Whatever measures taken to protect the composite cylinder in a fire, a pressure relief system is needed for all types of fires.

□ The **performance of the cylinder alone** (without any protections) should be assessed in order to provide information to the integrator.

□ Separate test/documentations of pressure release systems is needed, independent of cylinder geometry. Responsibility for use of adequate pressure release systems in any application can only be by the assembler/end-user. System assembler should design and test his safety devices

Determination of safety strategies

Design of the protective devices, for example: Frames can be used to delay the time to burst Position, number, orientation, diameter of the pressure relief pipes

SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES Fire COMP

Interactions with projects funded under EU programmes (max. 5)				
НуСОМР	Useful to build the knowledge and the state of the art.			
DELIVERHY:	Useful to build the knowledge and the state of the art.			
Hypactor	Useful to build the knowledge and the state of the art. Exp. Tests done contribute to confirm the knowledge of the composite behaviour (useful for modelling).			
Interactions with nat	tional and international-level projects and initiatives (max. 5)			
SUPERGEN -Integrated safety strategies for	EPSRC ref EP/K021109/1, face to face meetings, Exchanges and expert networking on modelling and composite behavior.			
onboard H2 storage				
Warwick Fire	http://www.warwick.ac.uk/warwickfire, share of modelling practices			

DISSEMINATION ACTIVITIES

fire **COMP**

Public deliverables

- D6-1-Website regularly updated
- D6.4- Transcription of project results into safety guidelines
- D6-5- Recommendation for RCS
- D6-6-Current fire approach for cylinders, RCS mapping and project expected outcomes
- Publications and proceedings: 18
- Determination of the tensile residual properties of a wound carbon/epoxy composite first exposed to fire, Journal of composite materials, 2106
- Simulation of Burst of hyperbaric hydrogen tanks in fire conditions, 17th ECCM, 2016

Patents: no

Conferences/Workshops

- 1 organised by the project
- 26 in which the project has participated (but not organised)

Social media

Only on website

HORIZONTAL ACTIVITIES

fire **COMP**

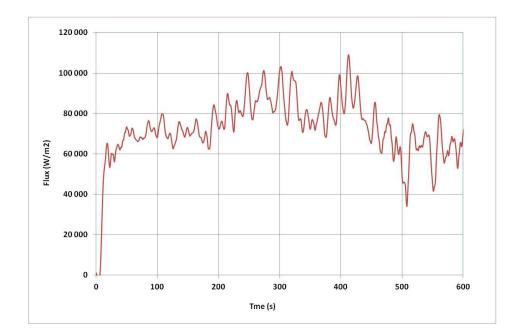
Training and education	 Some partners are directly members of University and PhD. students contribute also. INERIS and HSL have in their own missions to provide information to train potential users from industry and national regulation. Air Liquide and LMS SAMTECH participate to educational trainings.
	. Hereas were involved in the WC torrected for project
Safety, Regulations codes and standards	 Hexagon very involved in the WG targeted for project recommendations (ISO TC58-SC3 and ISO 197). Air Liquide as composite cylinder user also part of these RCS discussions Joint recommendations about fire testing submitted to ISO groups

	 Works performed within the project are sensible for public
	awareness.
Public	 INERIS and HSL are mandated by their country to provide
awareness	the right level of information for end users.
	• RCS recommendations will also be public on the web site
	Too recommendations will also be public of the web site

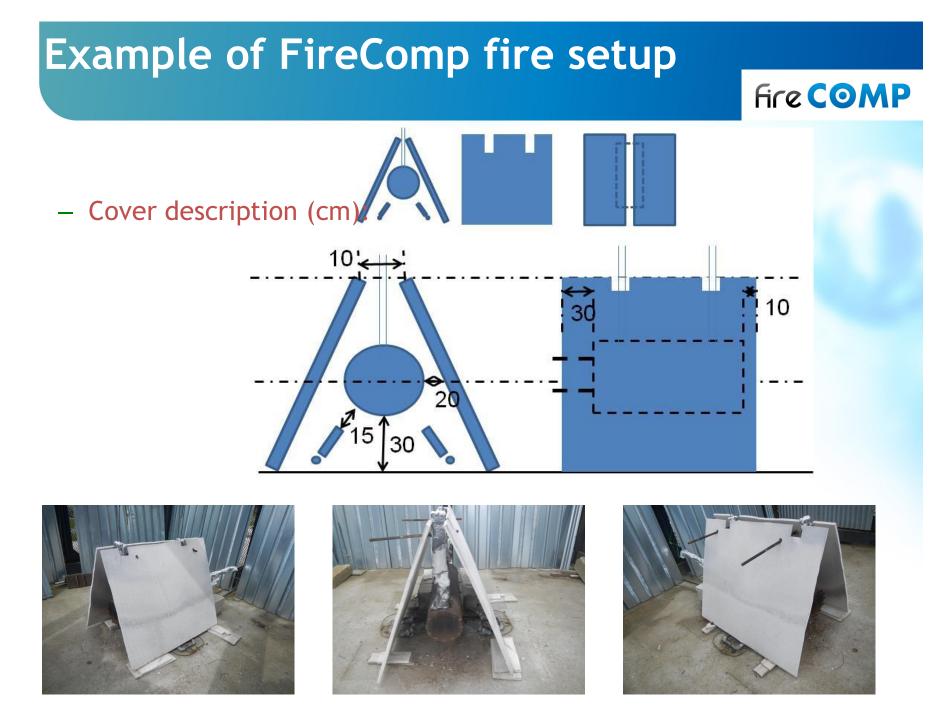
Thank You!

Coordinator: beatrice.fuster@airliquide.com

Calibration of thermal aggression


fire **COMP**

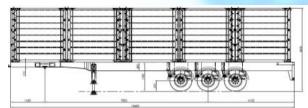
Fire should be calibrated to ensure a satisfying thermal aggression.


This can be done by **exposing a metallic mock-up** to the fire setup and record its **internal temperature increase**.

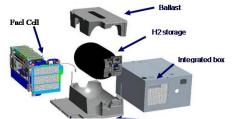
The **net heat flux** absorbed by the metallic tube can then be calculated (see appendix for the calculation).

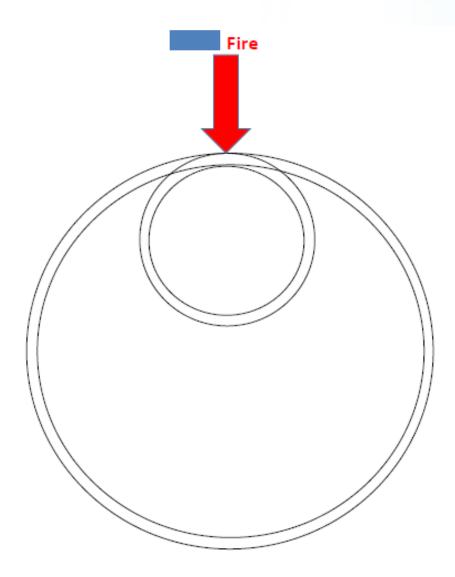
It should be stay between 60 and 100 kW/m² with an average value of 80 kW/m².

Firecomp Hydrogen systems







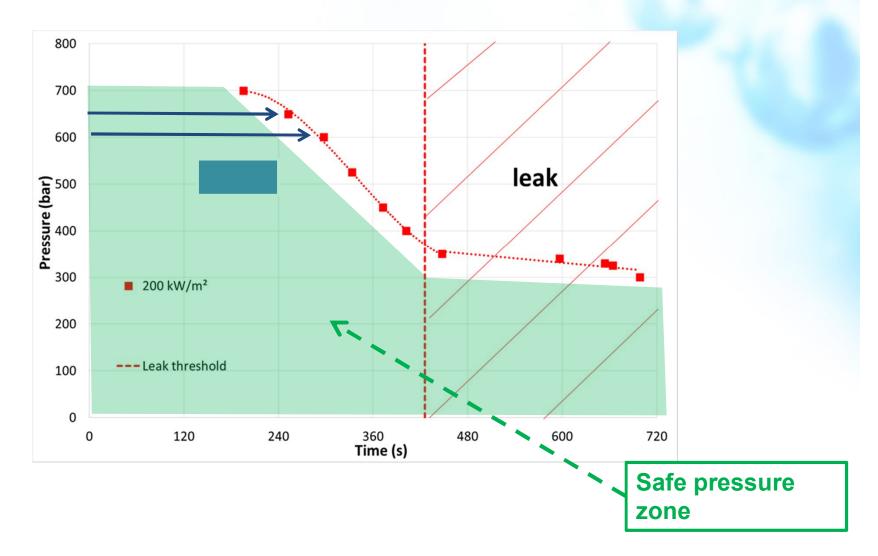


Direct extrapolation from smaller cylinder

Particular case

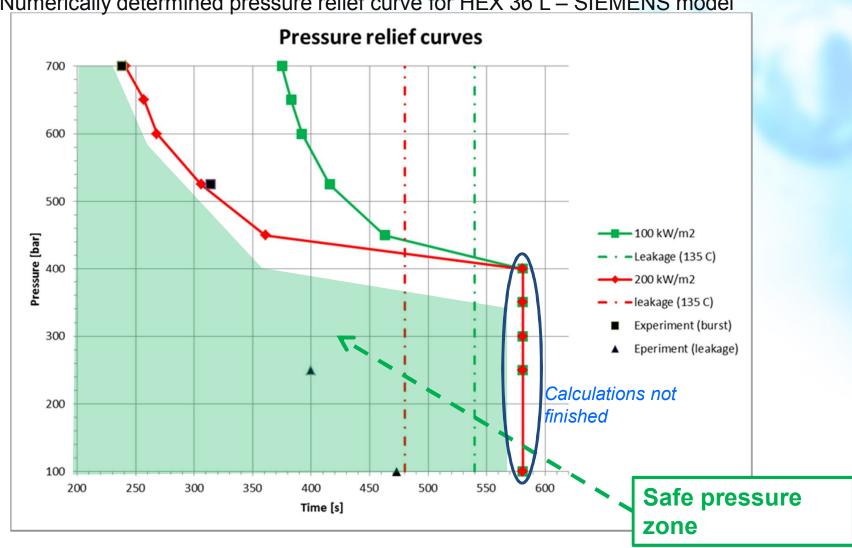
Small and large diameter cylinders Different service pressure Same composite material (CF & Resin) Same wall thickness Same safety factor

If the **winding sequence is comparable** (*i.e.* the mechanical load through the thickness is the same for both cylinders)


Then the safe relief curve will be the same for both cylinders.

Smaller high pressure cylinders can be used for characterization of larger diameter lower pressure cylinders and visa versa

Numerical simulation


fire **COMP**

Numerically determined pressure relief curve for HEX 36 L – CNRS model

Numerical simulation

fire **COMP**

Numerically determined pressure relief curve for HEX 36 L – SIEMENS model