

VOLUMETRIQ Volume manufacturing of PEMFC stacks for transportation and in-line quality assurance

Deborah Jones CNRS Montpellier

www.volumetriq.eu Deborah.Jones@umontpellier.fr

Programme Review Days 2016 Brussels, 21-22 November

PROJECT OVERVIEW

Project Information				
Call topic	FCH-01.2-2014 - Cell and stack components, stack and system manufacturing technologies and quality assurance			
Grant agreement number	671465			
Pillar (Horizon 2020)	Transport			
Start date	01/09/2015			
End date	28/02/2019			
Total budget (€)	5,163,450			
FCH JU contribution (€)	4,961,950			
Other contribution (€, source)	201,500 (Daimler self-funded, BMW 20% self-funded)			
Stage of implementation	33% project months elapsed at 01/11/2016			
Partners	CNRS, Johnson Matthey Fuel Cells, Solvay Speciality Polymers, Intelligent Energy (to Nov 2016), ElringKlinger, BMW, Pretexo. Associate Partner: Daimler			

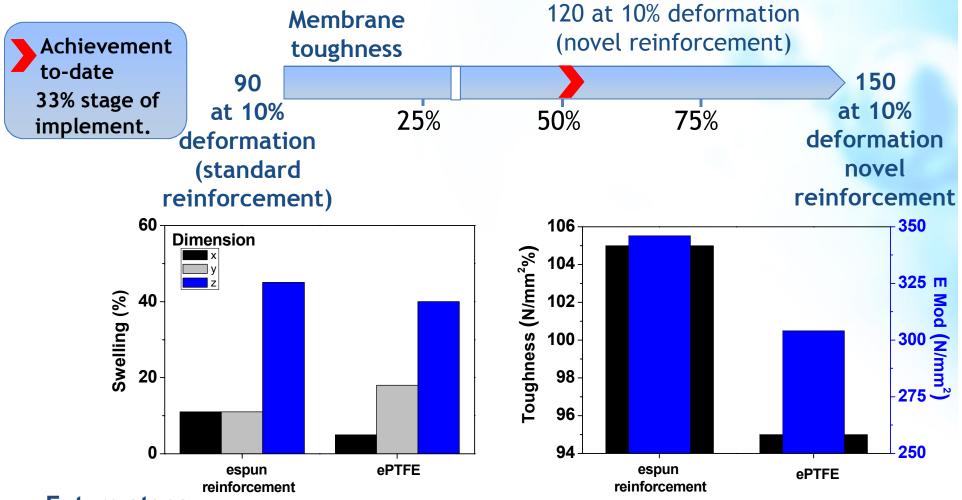
PROJECT SUMMARY

- VOLUMETRIQ is developing a European supply chain for PEM fuel cell components and stacks with volume manufacturing capability and embedded quality control, with validation of performance, lifetime and manufacturability
- The stack and components are based on automotive PEM fuel cell technology which is presently TRL5 for component manufacturing approach and concepts.
- The project will deliver a TRL7 stack and component design, at TRL7 manufacturing maturity, utilising a verified EU supply base.
- Global positioning vs international state-of the art:
 - Innovation in MEA components development
 - Innovation in moving from hand-built stacks to high volume capability throughout the supply chain - from sub-component through to stack assembly, while developing the appropriate quality assurance methodologies for "at scale" fuel cell manufacturing
- Transport Application Automotive

Project Summary VOLUMETRIQ **All partners JMFC, Solvay, CNRS** Solvay, CNRS, JMFC WP7 **CNRS** Reinforcement WP3 WP4 Dissemination WP1 Project CF(CF₂)_nand knowledge Management management O COLLABORATE CF_2 CF_2 DELIVER SO₃H CCMs & Single Cell High volume CCM production MEAs ionomer membrane/ **MEA** testing WP6 BMW, **WP2** Daimler, EK, JMFC, Solvay, Production Full size cell 200 cell existing stack Single cell new MEA **CNRS** 20 cell Processes stack assembly **EK, JMFC** (45 kW) component & plate testing testing Study •►(90 kW) specification and testing/ **EK, JMFC** WP5 **Bipolar Plate Plate Manufacturing** High volume bipolar optimisation Process & QC plate production

Project objectives

MAWP			
Reduce the production cost of fuel cell systems to be used in transport applications, while increasing their lifetime to levels competitive with conventional technologies	Cost reduction: target €100/kW (2020) Durability: demonstrate capability to achieve target 5,000 hours		
AWP 2014 Cell and stack components, stack and system	manufacturing technologies and quality assurance		
Cell and stack design improvements that have been validated and meet or exceed the TRL 5 level	Optimise existing component detail designs to achieve automotive power density of 2.5 A/cm ² at 0.6 V. Advance cell component and stack manufacturing technology level to TRL 7		
Validation and improvement of existing manufacturing methods to increase robustness, manufacturing yield and reduce product variation and manufacturing cost (QA strategies)	Develop volume manufacturing capability and quality controls at component and sub-component level		
Testing and validation of critical manufacturing sub- processes (low yield/high cost)	Investigate the parameters of the key cell components influencing durability, yield, cost		
Identification of manufacturing failure modes and implementation of manufacturing control plans	Review of processes and identification of failure modes with resulting control plans		


Year 1 achievements

- completed definition of automotive fuel cell stack requirements
- agreed and validated test protocols that will be used to generate membrane, MEA and stack performance data
- produced and supplied reinforcement and ionomer dispersion materials for baseline membrane and MEA development
- fabricated and tested the VOLUMETRIQ baseline MEA using materials representing the state-of the-art at the beginning of the project.
- completed cross-checking of test results between single cell hardware at 2 partners
- developed and supplied new improved reinforcement and ionomer dispersion materials for first generation improved membranes and MEAs
- Achieved higher performance with first generation improved membranes compared with the baseline
- introduced a new pilot level continuous membrane casting line to produce VOLUMETRIQ membranes by volume manufacturable processes
- communicated on VOLUMETRIQ through a press release (September 2015), project web-site (December 2015), brochure and newsletter (November 2016)

PROJECT PROGRESS: membrane mechanical properties

VQLUMETRIQ

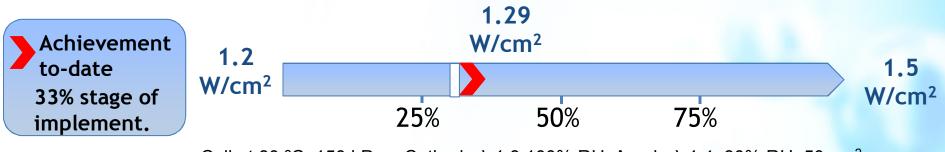
Future steps:

Scale-up reinforcements

Transfer optimised membrane processing procedures to pilot-scale continuous membrane casting line at JMFC

PROJECT PROGRESS: membrane mechanical properties

VQLUMETRIQ

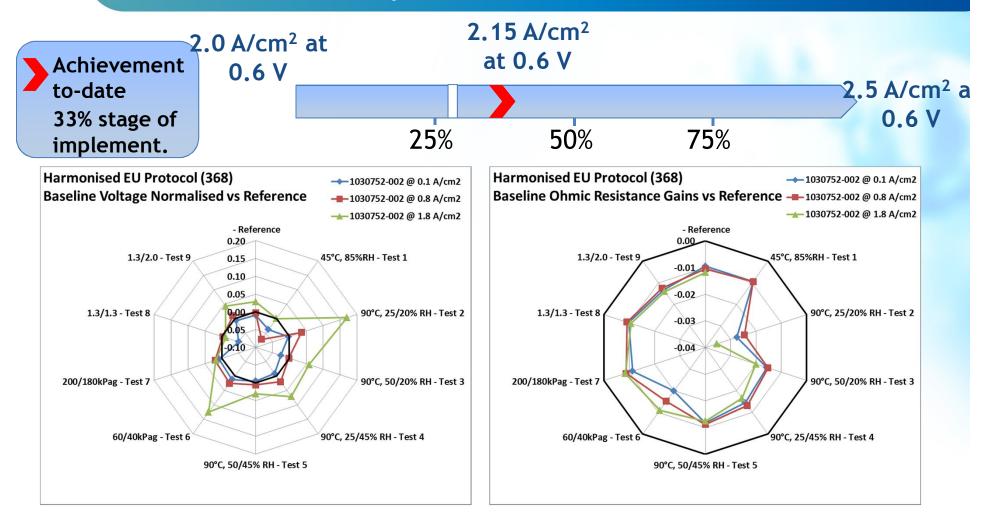


- Commissioning of a new pilot-scale continuous membrane casting line at JMFC for use in VOLUMETRIQ
- Line will enable the manufacture of a few linear metres of new reinforced membranes from 1 litre samples of ionomer dispersions

PROJECT PROGRESS: MEA power density

VQLUMETRIQ

Cell at 80 °C, 150 kPag, Cathode λ 1.8 100% RH, Anode λ 1.4, 30% RH. 50 cm²


Asp		Doromotor (KDI)	Unit SoA		FCH JU Targets		
addressed		Parameter (KPI)		2016	Call topic	2017	2020
Pov den	-	Power density at 0.6 V	W/cm ²	1.29	1.5	1.5	1.5

Future steps:

Optimise membrane processing Implement generation 2 catalyst layers with optimised membrane

PROJECT PROGRESS: MEA current density

VQLUMETRIQ

• MEA with baseline membrane using electrospun reinforcement and low EW Aquivion ionomer has demonstrated improved performance versus the project Reference MEA with conventional reinforcement, especially in hot dry conditions, and has also shown lower ohmic resistance.

Stack development

- 90 kW stacks on fully automated production line at an industrial rate
- ElringKlinger's NM5 stack platform
- On display at VOLUMETRIQ poster

SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES

Interactions with projects funded under EU programmes				
From MAESTRO	Electrospun reinforcements and cross-linked low EW PFSA ionomers			
FromIMPACT	Development of ultrathin reinforced membranes (Solvay)			
ToINSPIRE	VOLUMETRIQ membrane reinforcement transferred to INSPIRE (CNRS). Ultimately, VOLUMETRIQ membranes to be transferred to INSPIRE (JMFC, CNRS)			
FromAutostack Core	Stack component specification (BMW)			
FromSTAMPEM	Stamping tool design know-how (EK)			
Interactions with national and international-level projects and initiatives				
Montabs Programme (DE)	Automotive stack manufacture (EK)			
BMWI-ELAAN	Development of a 20 kW fuel cell system and integration into a commercial vehicle based on NM5 stack technology (EK)			

DISSEMINATION ACTIVITIES

Public deliverables

- D1.2 Project shared workspace implemented and operational (M2)
- D2.1 Stack requirements provided for further component analysis (M3)
- D2.2 Stack component requirements derived and agreed (M6)
- D2.3 Stack component test scope and procedures (M6)

Publications:

- None to date

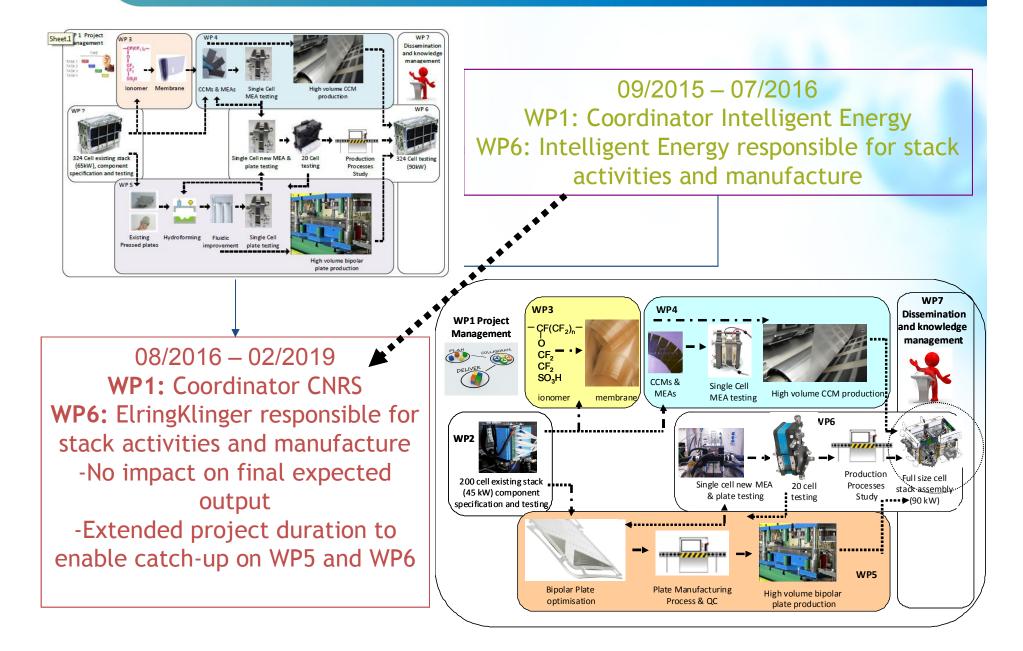
Patents:

• None to date

Conferences/Workshops

- Electrospinning for Energy organised by project partner CNRS
- Presentation of VOLUMETRIQ results at above conference

Social media


in

Thank You!

Coordinator: Deborah.Jones@umontpellier.fr

Project Summary

VQLUMETRIQ

