PACE

Pathway to a Competitive European Fuel Cell micro-Cogeneration Market

Pathway to a Competitive European Fuel Cell micro-CHP Market European Hydrogen Week

Gunter Grosch Product Manager SenerTec

www.pace-energy.eu info@pace-energy.eu

Driving the Fuel Cell micro-Cogeneration sector closer to mass market uptake

How to overcome the point of greatest risk in new product commercialisation?

Prasistest BrevestorZefe Fors Dependent	ene.field*		PACE		KFW433	
Callux	ene.field		PACE		KFW433	
• Period: 2008 – 2015	• Period: 2012 – 2017		• Period: 2016 – 2021		Period: started in 2016	
 Total budget: €75 million 	 Total budget: €52 million 		Total budget: 690 million		German NOW NIP grant	
• German NIP co-financing: 50%	• EU co-financing (FCH JU/FP7):		• EU co-financing (FCH		scheme administered by KfW	
 500 systems installed in 	50%		JU/Horizon 2020): 37%		bank	
Germany	•> 1,000 systems installed		• > 2,500 systems to be		Beneficiaries: End customers	
• > 5 million operating hours	in 11 European countries		installed		• Eligible size: 0.25 kWe – 5 kWe	
 CO₂ reduction by 30% on 	• > 3 million operating hours so		in 11 European countries		Grant value per system:	
average per year	far		500 units/manufacturer		€5,700 - €28,000	

#PRD2021 #CleanHydrogen

Improve products' performance

Establish Fuel-Cell micro-Cogeneration as a standard technology

Raise awareness on Fuel-Cell micro-Cogeneration

Demonstrate product readiness as a key component in the delivery of EU's energy goals

•Call year: 2016

•Call topic: Large scale demonstration of µCHP fuel cells

Project dates: 01/06/2016 - 30/06/2022

- Total project budget: EUR 90,307,094.50
- •FCH JU max. contribution: EUR 33,932,752.75

•Other financial contribution: EUR 56,374,341.75

 Partners: BDR Thermea, Bosch, COGEN Europe, DTU, Element Energy, HSLU, SOLIDpower, Sunfire, Viessmann, Hexis

Overview of FC micro-CHP systems in PACE

Buderus: Logapower FC10.2	Buderus: System Logaplus	BlueGEN	BlueGEN BG15	Dachs 0.8	eLecta	Vitovalor 300- P, PA2 and SA2	Sunfire-Home 750
fueldell		and the second s			the second		
100	200		750	200	300	>750	500
SOFC	SOFC	SOFC	SOFC	PEM	PEM	PEM & SOFC	SOFC
0.7kW	1.5kW	1.5kW	1.5kW	0.75kW	0.75kW	0.75kW	0.75kW
Buderus	Buderus	SOLID	SOLID			VIESMANN	🔷 sunfire
1-2 family homes (up to end 2018)	1-2 family homes, residential buildings and SMEs with high electricity demand	SMEs, apartm multifar	ent buildings and nily homes	1-2 family houses (for new and existing buildings)		Domestic and small commercial	Residential building (with LPG supply)
		#Cl	#PRD2021	FCH O	European Commission		

2016-Dec

Number of installed PACE units

• 1998, October 2021

D1.11 - Report from Regulatory Barriers Group

A Regulatory Barriers Working Group was created within the PACE project to identify key barriers to the promotion of FC mCHP technology in Europe and to propose solutions. Below are the 5 key pillars and the main regulatory barriers within these.

European

Commission

Key Recommendations:

8

Europear

Hvdroge

- A standardisation of regulation across Europe is essential to overcome barriers across all five pillars
- Communication between states and the sharing of best practice examples will help to simplify the process for potential customers
- Engaging potential customers and highlighting the advantages of this technology will help to encourage confidence in the market while regulations are being updated

The challenge

- Identify additional income streams from the participation of mCHP in grid service markets take advantage of mCHP flexibility
- 'Grid services' analysis covered traditional markets (e.g. frequency balancing) and emerging markets (e.g. congestion)
- Also analyse hurdles, opportunities, readiness: develop roadmap and recommendations
- Approach: Model-based optimisation taking into account thermal storage, building thermal inertia, electricity demand, heat demand; literature review; interviews
- **Considered:** Mix of Member States and regimes (e.g. Eastern & Western Europe, spark spreads, generation mix)

European

Headlines

- The greatest opportunity comes from **maximising self consumption** up to 2'239 Eur/year for three family house
- Up to 301 Eur/year as additional income from frequency balancing
- Grid reinforcement avoidance from demand-side flexibility benefit of up to 500 Eur/kW
- Widespread realisation in 5-8 years with no intervention
- Aggregation of > 1000 units required to make business case for small scale flexibility
- Integration in **HEMS is best option**
- Single biggest hurdle for mCHP is cost-benefit for capex vs revenue per unit of flexibility

European

Optional extra / backup slide

D4.3Economic value of FC mCHP participation in power and grid service markets• Complete• Completed economic value analysis for three countries• Considered grid services and avoidance of grid extensions• Examined legal and commercial hurdles to participation in grid service marketsD4.6Final draftRoadmap to capitalize and move further the potential of FC mCHP for demand response as part of a VPPD4.6Final draft• Analysed OEM and aggregator perspectives • Proposed generic steps for improving mCHP participation in grid service marketsD4.5Complete• Symposia in 2019 and 2020 were in scope of WP4 • However, symposium was also held in 2021, creating an opportunity for further networking / dissemination on PACE	Del.	Status	Achievements in 2021
D4.6Final draftRoadmap to capitalize and move further the potential of FC mCHP for demand response as part of a VPP • Analysed OEM and aggregator perspectives • Proposed generic steps for improving mCHP participation in grid service marketsD4.5CompleteEuropean Grid Service Markets Symposium • Symposia in 2019 and 2020 were in scope of WP4 • However, symposium was also held in 2021, creating an opportunity for further networking / dissemination on PACE	D4.3	Complete	 Economic value of FC mCHP participation in power and grid service markets Completed economic value analysis for three countries Considered grid services and avoidance of grid extensions Examined legal and commercial hurdles to participation in grid service markets
D4.5 Complete European Grid Service Markets Symposium • Symposia in 2019 and 2020 were in scope of WP4 • However, symposium was also held in 2021, creating an opportunity for further networking / dissemination on PACE 	D4.6	Final draft	 Roadmap to capitalize and move further the potential of FC mCHP for demand response as part of a VPP Analysed OEM and aggregator perspectives Proposed generic steps for improving mCHP participation in grid service markets
	D4.5	Complete	 European Grid Service Markets Symposium Symposia in 2019 and 2020 were in scope of WP4 However, symposium was also held in 2021, creating an opportunity for further networking / dissemination on PACE

