

Development of the most costefficient hydrogen production unit based on anion exchange membrane electrolysis

✦ **— H**₂ European FOO Hvdrc Week

Luis Colmenares-Rausseo SINTEF Industry on behalf of

www.channel-fch.eu

Thulile.khoza@sintef.no

- Call topic: FCH-02-4-2019: New Anion Exchange Membrane Electrolysers
- Project dates: 2020-2022
- Total project budget: 2M €
- TRL: 2-3
- Coordinator: SINTEF

The aim of CHANNEL is to design, construct and test a cost-efficient, 2 kW AEM water electrolyser stack and balance of plant able to operate at differential pressure.

The electrolyser will be based on low-cost materials, including non-PGM electrocatalysts, porous transport layers and bi-polar plates, performing at < 1.85 V per cell at 1 A cm⁻², using diluted KOH electrolyte at a system capital cost of < 600 \in /kW

CHANNEL Specific Objectives

- To further develop best-in-class EVONIK polymer materials to fulfil the membrane and ionomer KPI's according to the FCHJU objective 2.4-2019
- Optimize nanostructured Ni-based electrocatalysts with respect to activity and durability for the HER and OER
- Optimize coating methods, catalyst loading, as well as ionomer type and loading in order to obtain the single cell performance of < 1.85 V per cell at 1 A cm⁻² and outstanding durability
- To design and integrate the newly developed components in a 100 cm² active area, 10 cell,
 2 kW stack platform, with cell voltages < 1.85 V per cell, 30 bar differential pressure
- To develop a **low-cost electrolyser** unit with a CAPEX equal to or below current classical alkaline electrolyser

Progress: membrane and ionomer

	OBJECTIVE			Electroly	sis test	ting at	60 °C	(Pt 8	i Ir ca	taly	sts)
	FCHJU 2.4-	OBJECTIVE	2,1								
UNIT	2019	CHANNEL									
$\Omega{ m cm^2}$	< 0,07	< 0,06	2,0								
mS/cm	50	> 50								. *	1
mS/cm	not specified	> 90	1 9						^ ^		
mS/cm	not specified	> 80	Σ					, • '			
10 ⁻¹⁵	not specified	< 15	eg 1,8				· • *				4
w-%	not specified	< 10	lta			• `	Î.		• † *		
%	< 1	< 1	¥ 1.7			· ī .		•			_
%	< 4	< 4	le ll		^	*****					
MPa	15	15	0 16			-					
%	100	100	1,0								
MPa	not specified	> 0,1	1,5	••••			▲ PE • Ev	M (DI onik A	Wate EM (1	r) LM K(OH)
MPa	not specified	>0,1	1,4								1
mS/cm	20	> 60		0,0 0,2 0,	,4 0,6	0,8 1	,0 1,2	1,4	1,6	1,8	2,0
h	2000	> 5000				Curre	nt [A/	cm ² 1			
						currer					

Evonik AEM outperforms by 0.186 V
(@ 60°C @ 2 A/cm ² 1M KOH) benchmark
PEM membrane Nafion N-115 (60°C @ 2
A/cm ² DI-H ₂ O)

>Implementing Evonik AEM can enable reduction of operational costs up to 9.5% in comparison to PEM water electrolysis

Single cell, 25 cm² active area European

1,8 2,0 2,2

Commission

#CleanHydrogen

#PRD2021

Europea

Hydroge

KPI

Ex-situ stability (AST protocol, 1 M KOH, T = 60 °C, 600 hr)

Mechanical strength (in dry conditions, T = RT, RH = 50%)

Elongation at break (in dry conditions, T = RT, RH = 50%) Mechanical strength (DMTA, in fully hydrated, swollen

Mechanical strength (DMTA, in fully hydrated, swollen

Area specifc resitance ASR, T = RT

OH conductivity, T = RT

water uptake, T = RT

conditions, $T = 30^{\circ}C$)

conditions, $T = 60^{\circ}C$)

OH conductivity, T = 60°C

hydrogen crossover ($T = 60^{\circ}C$)

Dry/wet swelling machine Direction (MD)

Dry/wet swelling traverse Direction (TD)

Ionomer OH conductivity, $T = 60^{\circ}C$ In-situ stability ASR remains

Progress: catalyst development

Overpotential at 10 mA $\text{cm}^{-2}_{\text{geo}}$ in <1 M KOH

Hydrogen Evolution Reaction (HER)

- HER-CHANNEL catalyst: <150 mV overpotential
- Performance comparable to Pt/C in alkaline electrolyte.

Oxygen Evolution Reaction (OER)

• OER-CHANNEL catalyst: <250 mV overpotential

Development of 1-D transient AEM electrolyser model

- Model captures local effects
 - PH changes within catalyst layers
 - Water concentration gradient within AEM
- Model predicts degradation over time
 - catalyst dissolution
- CHANNEL initiative:
 - release of code on GitHub

Progress: Stack development

Bipolar plates / PTLs / Flow field

• Bipolar materials

- Ti
- SS AISI 304L
- Inconel 625
- SS AISI 316L
- Nickel
- PTL materials
 - SS AISI 316L
 - Nickel
 - Titanium

Outlet

Progress: Dissemination and communication

- Project Website and three social media accounts have been established.
- CHANNEL promotional video has been created
- One per-review publication and six contributions to conferences/webinar; organizing two-days workshop on AEM.
- Creation of the AEM Hub for promoting the AEM technology in cooperation with the other EU granted AEM projects.

- OER and HER CHANNEL catalysts exhibit excellent performance, comparable or better than SoA catalysts
- Membranes and ionomers with excellent chemical/mechanical properties and good compatibility with CHANNEL electrocatalysts
- Development of 1-D transient model to predict durability of catalyst layers and probing local effects
- Preliminary stack design concluded and PTLs and BPP materials validated, including sealings
- Communication and dissemination progressing as expected

• Testing of the preliminary stack and finalize the design of the 2kW stack design

• Develop a beyond the state-of-the-art AEM electrolyser system including power supply, system control, gas drying unit achieving:

- → An electrolyser cost < $600 \notin kW$ at 500 kW system level
- → An energy consumption $< 4.7 \text{ kWh/Nm}^3$ at a system level
- ➤ A 100% EU supply chain and increased EU competitiveness in production of green hydrogen from renewable energy sources.
- Assess the upscale and commercialisation of the newly developed technology

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 875088. This Joint undertaking receives support from the European Union's Horizon 2020 research innovation programme and Hydrogen Europe and Hydrogen Europe Research.

