PECSYS

Technology demonstration of large-scale

photo-electrochemical system for solar

hydrogen production

Sonya Calnan

Helmholtz Zentrum Berlin (HZB)

www.pecsys-horizon2020.eu

sonya.calnan@helmholtz-berlin.de

European

HV

FOO

Weel

С Н, \diamond

European

Commissio

#CleanHydrogen

Project Summary

Main Objectives

Performance measure	Target	Relevance		
Hydrogen production rate	≥ 16 g/hr	Yield at maximum irradiance		
Solar to hydrogen (StH) efficiency	> 6 %	Efficiency		
Device stability, ∆StH	< 10 % after ½ year	Service life, reliability		
Cost target, LCOH	<€5/kg*	Economic feasibility		

* LCOH: Levelised cost of hydrogen production

Application and market area

Decentralised green hydrogen supply and storage for residential to small size commercial and industrial use

Project Achievment - 10 m² Demonstrator

Solar hydrogen generation using photovoltaic modules directly coupled to electrolyser with balance of plant innovations

Solar to hydrogen (STH) efficiency, Hydrogen production rate, Stable operation

JÜLICH

- Water supply only via cathode PEM electrolyser¹
- No active heating of electrolyser
- Better performance than state of the art ^{2,3}

1 Müller, et al., Energies, **2019**, 12(21): 4150. 2 Muhammad-Bashir, Solar Energy, **2020**, 205:461. 3 Maeda, et al. J. Intl Council on Electrical Engineering, **2016**, 6(1): 78.

Location Year	Voor	Photovoltaic array			Time in	Average StH	m _{H2}
	Туре	Area (m ²)	Power (kWel)	operation (h)	eff. (% _{LHV})	(g/h-m²)	
Juelich, (DE), PECSYS	2020	Silicon HJT & CuInGaSe	10.5	1.73	>2680	~10	2.3
Thuwal, (SA) ² SOA	2020	Polycrystalline silicon	1.5	0.27	~10	9.4	1.2
Tsukuba, (JP) ³ SOA	2013	Polycrystalline silicon	21.5	2.6	~20	~5	-/-

OLIBIO

n/a

n/a

n/a

Project Results - TRL and Efficiency

 Peer reviewed publication with summary of project results: *Calnan, et al., Solar Rapid Research Letters, https://doi.org/10.1002/solr.202100479

 Public deliverables and videos of the project available at: https://www.helmholtzberlin.de/projects/pecsys/public-documents_en.html

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 735218. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme and Hydrogen Europe and N.ERGHY. The project started on the 1st of January 2017 with a duration of 48 months.

