
Testing Hydrogen admixture for Gas Applications

Speaker Patrick Milin ENGIE

https://thyga-project.eu
patrick.milin@engie.com

Project Overview

• Call year: 2019

• Call topic: FCH-04-3-2019 - Hydrogen admixtures in natural gas domestic and commercial end uses

Project dates: January 2020 - December 2022

% stage of implementation 01/11/2021: 60%

Total project budget: 2.5M€

FCH JU max. contribution: 2.5M€

Other financial contribution: 0

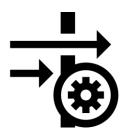
Partners: BDR Thermea, CEA, DGC, DVGW-EBI,
 ELECTROLUX, ENGIE, Gas.be, GERG, GWI

#CleanHydrogen



Project Summary

Context: Hydrogen, along with green electricity from wind and solar power, provides a pathway to decarbonise the European energy systems. Hydrogen blending in the gas grid would reduce the carbon footprint of gas utilisation, contributing to an overall reduction of greenhouse gas emissions.


HYDROGEN INJECTION IN THE GAS GRID

One way to use hydrogen as an energy vector is to inject it directly into the existing natural gas grids.

INCREASED LEVELS OF HYDROGEN

End-use equipment across all sectors need to deal with higher levels of hydrogen in natural gas in a safe, efficient and environmentally friendly way.

NEW CHALLENGE FOR END-USE EQUIPMENT

Hydrogen is not part of natural gas compositions, i.e. existing equipment was not designed with hydrogen in mind.

200 MILLION GAS APPLIANCES

There are an estimated 200 million gas appliances installed in the European residential sector alone

Project Summary

Objectives and expected results

Closing knowledge gaps regarding technical impacts on residential and commercial gas appliances.

IDENTIFY STANDARDS TO MODIFY

Identify standards that should be adapted to answer the needs for new appliances and proposals on test gases.

CLARIFY THE ACCEPTABLE HYDROGEN PERCENTAGE

Clarify the acceptable hydrogen percentage that wouldn't compromise **safety and performance**.

Project Progress/Actions

Understanding the available knowledge on the impact of H₂NG blends on end-use appliances

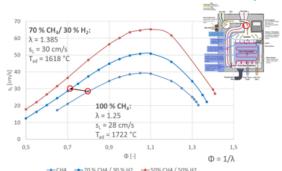
Achievement to-date

Many initiatives and projects without common methodology

50% 75%

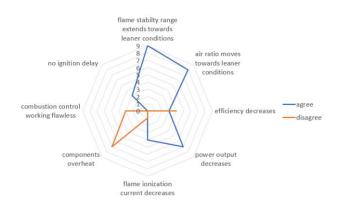
Identification of differences and incomplete knowledge

Segmentation of the portfolio of residential and commercial appliances in Europe



Background of combustion theory for hydrogen admixtures.

Impact on a fully premixed heating appliance (no combustion control)

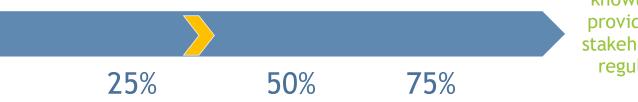

→ Air excess increases and stabilizes flame velocity

FCH

25%

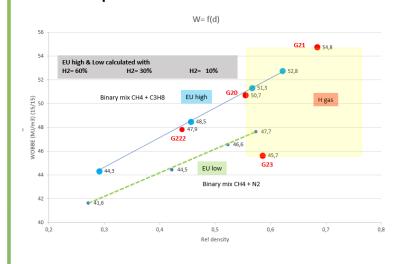
First assessment of potential hydrogen impacts based on experts view and literature study.

Prioritization of the appliance market segments for representative testing.



Project Progress/Actions

Testing and results provided to the stakeholders



Around 90 appliances to test

knowledge provided to stakeholders regularly

- So far, 35% of the appliances tested: condensing and atmospheric boilers, cooking hobs, ovens, fires, catering
- Generally, when H₂ % is increasing: Efficiency is not significantly impacted, NOx tend to decrease, CO can or not be impacted

#PRD2021 #CleanHydrogen

Overview of main results

- The atmospheric technologies tested so far have been able to cope with 30% of H₂. Above 30%, potential issues of flashback and high temperature due to a change of combustion properties (cooking hobs).
- The principal reason for issues for the **premix appliances** is the adjustment. If we consider that this can be solved, most appliances will have no problem anymore and **can burn gas with at least 40% H**₂.

Project Progress/Actions

Overview of the current standardization/certification framework

Example with H group

Achievement to-date

Current standardization framework

Description and identification of issues

25%

50%

75%

 $\rm H_2$ and $\rm H_2NG$ are in the scope of Gas Appliances Regulation (EU) 2016/426 Current certification approach

APPLIANCE USE	APPLIANCE CERTIFICATION				
WORKING CONDITIONS	TEST CONDITIONS				
DISTRIBUTED GAS	TEST GASES	+	TESTS + REQUIREMENTS		

Test gases are defined by EN 437 elaborated by CEN/TC238

Objective	Name	Composition	Ws
Reference	G20	100 % CH ₄	50,72
Incomplete combustion + sooting	G21	87 % CH ₄ + 13 % C ₃ H ₈	54,69
Light back	G222	77 % CH ₄ + 23 % H ₂	47,87
Flame lift	G23	92,5 % CH ₄ + 7,5 % N ₂	45,66
Overheating	G24	68 % CH ₄ + 12 % C ₃ H ₈ + 20 % H ₂	52,09

Main conclusions

- H₂NG supply may compromise an existing appliance's conformity to a significant number of essential requirements
- Existing appliances did not have to be designed for H_2NG supply \Rightarrow H_2NG supply cannot be considered as 'normal use' \Rightarrow no product liability by manufacturer

What is going-on regarding standardization?

- Already several Initiatives from notified bodies and CEN Technical Committees on H₂NG certification
- Results from THyGA testing programme will be provided to CEN TCs and manufacturers as Technical guidelines to support standardization activities

#PRD2021 #CleanHydrogen

Risks, Challenges and Lessons Learned

Impact of covid-19 pandemic on planning

Many meetings, internally or externally, that ensured a **strong visibility** for THyGA (but also **time-consuming**)

Delays in some tasks, especially finalization of deliverables but without impact on other tasks and quality has been enhanced

Delays on the start of the tests for some Labs → risk on the planning (but all mitigation measures are taken to cope with it)

Kick-Off meeting, only « physical » meeting for the project in 2 years

Risks, Challenges and Lessons Learned

A fast-moving environment requiring a lot of flexibility

CEN TCs starting to work on "H₂ ready" certification

"H₂ ready" concept discussed in regulation for Energy-related Products (ErP): Ecodesign & Labelling

Manufacturers H₂ roadmaps pushed by the "Primemovers" initiative

DSO / TSO clearer about possible $H_2\%$ in the gas grid (up to 20 - 30%)

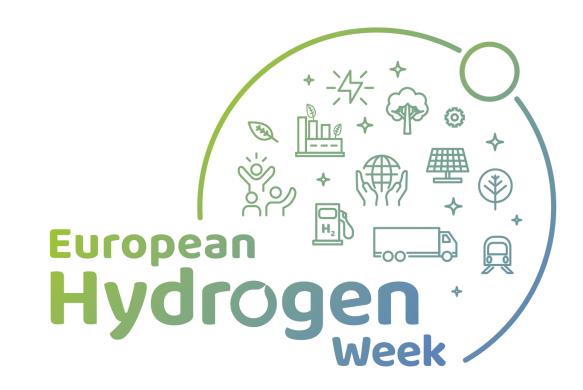
Example of consequences for the project

- PEADJUSTING THyGA testing to give the best value to the industry (focus on 0 to 30% H₂)
- of the WP4 to best suit the needs of the stakeholders

Exploitation Plan/Expected Impact

Exploitation

- 80% of the deliverables are public
- Around 40 advisory panel members + ~25 manufacturers providing appliances for tests + links/liaisons with 10 CEN Technical Committees + panel of "external Labs"
- The project already organized ~10 public or technical workshops to discuss our methodology and analysis of the first results. Presentation of the project's progresses during TC meeting (TC109, TC49, TC106, etc.) → The goal is to make sure that the created knowledge is used directly by relevant stakeholders
- Strong link with the GENR CEN PNR project (WP8)
- "Green Hydrogen" for Europe roadmap in link with other
 EU projects (Higgs...)


 #PRD2021
 #CleanHydrogen

Impacts

- Establishing how the existing certification shall be modified to allow higher concentrations, including the related additional costs and the required changes to common gas burners
- Recommendations for revision of EN or ISO standards or drafting of new standards based on PNR results and a review of the existing testing methods
- Improved knowledge on the effect of H₂NG on common burner types including necessary adjustments and design changes. This will help the industry to bring on the market appliances that will accept H₂NG.

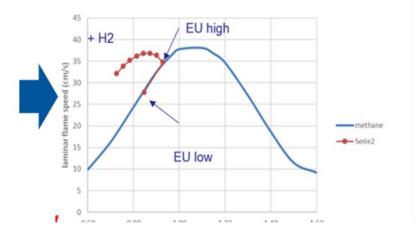
WP3 Test program

TESTING PROGRAMME & Instructions

- 1.1 SAFETY- with CH4
- 1.2 SAFETY- with EULOW
- 1.3 SAFETY- with G23
- 1.4 Cold start.
- 1.5 Hot start.
- 1.6 Low air temperature (- 10 C)
- 1.7 Flue gas pipe length
- 1.8 ROC (PLUGG FLOW)
- 1.9 Impact of H2 on flame detection.
- 1.10 Flashback analysis.
- 2 Merged test
- 3.1 ADJUSTMENT A
- 3.2 ADJUSTMENT B
- 3.3 ADJUSTMENT H
- 3.4 ADJUSTMENT G
- 4.1 Delayed ignition test.
- 4.2 Soundness
- 4.3 Quick variation Qmin-Qmax Shut-off
- 4.4 Overheat. Meas. of temp.
- 4.5 Cooker hob test with 4 burners on
- 4.6 Influence of wind
- 4.7 Long term (limited time)
- 4.8 Fluctuation of the aux. energy
- 4.9 Fluctuation of pressure
- 4.x Other test

PRACTICAL information and instructions

- 1. Few abbreviations used
- 2. Overall chronology. Testing: before, during, after
- 3. Document DATA Sheet
 - 3.1 Introduction DOCUMENT "DATA SHEET"
 - 3.2 Document DATA SHEET Content
 - 3.3 Overall instructions to fill in sheets
 - 3.4 Nomenclature for saving datasheet files names
 - 3.5 Test programme. Standard Test & additional tests
 - 3.6 Sheet TEST PROGRAMME
 - 3.7 Sheets EU Low and EU high (Gases)
 - 3.8 Gases parameters calculation (for each test)
 - 3.9 Sheet DATA SHEET: Overall colour code
- 4. Testing
 - 4.1 Overall Test conditions Sheet "STANDARD TEST CONDITIONS"
 - 4.2 Flashback
 - 4.3 Instructions to perform the test following the sheet "DATA SHEET")
- 5. Open questions
- 6. Annexes



WP3 Test program: focus on adjustement

Adjustement is an issue for premix boilers (and other segments?)

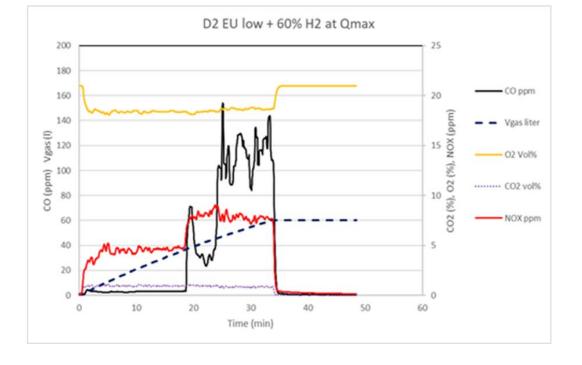
- a) ADJUSTMENT EU HIGH -> Gas used= EU LOW + H2
- ADJUSTMENT EU LOW -> Gas used= EU HIGH + H2 (this test is the most critical for appliances that can be adjusted)
- c) ADJUSTMENT EU LOW + 20% H2 -> Gas used= EU HIGH + H2
- d) ADJUSTMENT EU High + 20% H2 -> Gas used= EU low + H2

Identification of the most critical adjustement (peak of CO)

CASE	EULOW + 10, 20, 30% H2	EU low +0 to 60% H2	EU high + 20% H2	EU high + 0 to 60% H2
G	Adjusted •			→ Used

Consequence on the market: installers would need to be able to assess the % of H2 in the grid during installation and maintenance

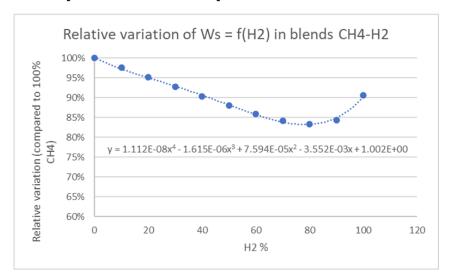
WP3 Test program: focus on flashback

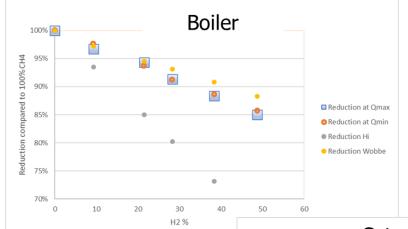


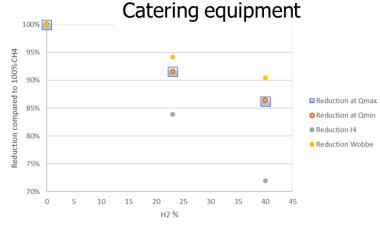
t = 5 min

t = 8 min

Test showing FB under following test conditions, Qmax, Pnom, CH4 = 40% H2 = 60%







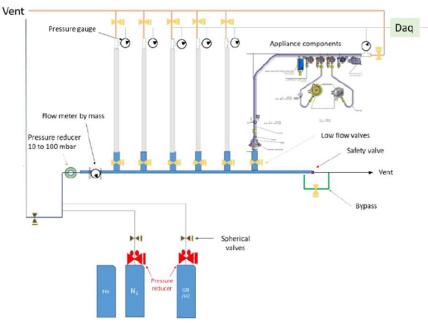
WP3 Test program: focus on heat output

Impact on heat output



WP3 Long term tests

European


#PRD2021

#CleanHydrogen

WP3 Leakage tests

Test rig structure

Assembly lines

Old components gathered from THyGA partners: DGC (Denmark), ENGIE (France), GWI (Germany) and DVGW.EBI (Germany).

New components from appliance manufacturers

STATIC METHOD: the installation would be filled with the gas mixture (60%CH4+40%H2) to a given pressure and closed.

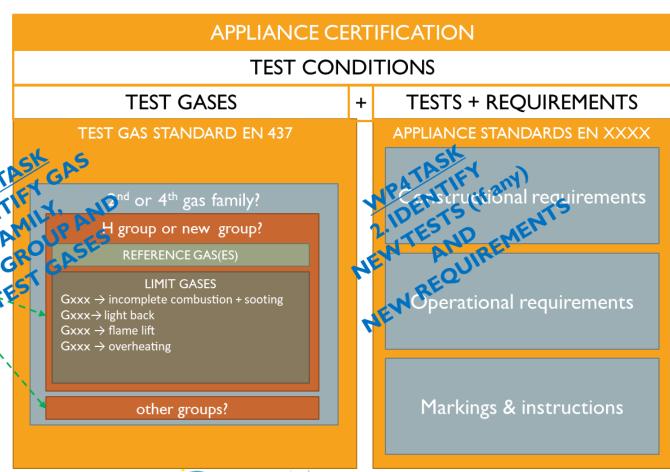
- The pressure and temperature would be monitored along the whole test duration.
- A pressure drop would indicate the presence of a leak.

DYNAMIC METHOD: a gas flow would be imposed in the line to reach a determined pressure level.

 The measured flow necessary to maintain the required pressure level, would indicate and quantify a leak.



WP4 Current standardization/certification framework


WP4 H₂NG INTEGRATION IN CURRENT APPROACH

APPLIANCE USE

WORKING CONDITIONS

DISTRIBUTED GAS

H2NG

Optional Slides WP5 Methodology

- Preparation of a survey to the advisory panel members to gather information for D5.1 "Review on other projects related to mitigation and identification of usable sensors in existing appliances": the goal is to understand the main orientations about mitigation and information about technologies planned to be used by stakeholders
- The idea is to build the deliverable step by step, from different sources of information

Impact of H2NG blends on appliances

WP2 – Theoretical and « in practice » impacts of H2NG on appliances

WP4 – Risk analysis

Criticity of appearance of phenomena

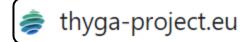
WP3 – Test results AP group feedback

Application to type of

WP2 - Segmentation

Mitigation approach per step of %H2

According to European trends: Ecodesign review, Standardization activities



Communications Activities

VISIT THE THYGA WEBSITE

All public presentations and deliverables of the project will be available on the project website

GERG LINKEDIN & WEBSITE

For regular updates, you can also follow the GERG <u>LinkedIn</u> page and <u>website</u>

CONTACT EMAIL

Do not hesitate to contact us by email at contact_thyga@engie.com

Dissemination Activities

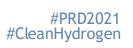
- Organisation of thematic webinars (combustion theory, leakages and material science related to H₂NG blends, standardization...)
- THyGA Newsletter: distribution through GERG Mailing, Social media, THyGA and GERG websites; included in the FCHJU newsletter
- Publications, ex: <u>'THyGA Burning Bright</u>', Global Voice of Gas by the International Gas Union, June 2021
- Around 10 participations to conferences/workshops (IGRC 2020, Wind meet Gas, ENTSOG PrimeMovers...)

Dissemination Activities

- **6 Public deliverables** (5 more to come by November 2021)
- Newsletters (subscribe!) and articles
- Replays of several workshops
 - ✓ Kick off of the THyGA project
 - √ Impact of hydrogen admixture on combustion processes
 - √ Materials science impacts of hydrogen blends
 - ✓ Standardization and certification of gas appliances in view of H2NG supply
- 15th of December 2021: **General THyGA Workshop**, **showcasing the interim results**

Synergies With Other Projects And Programmes

Interactions with projects funded under EU programmes


Interactions with national and international-level projects and initiatives

CEN GERG Pre-Normative Research project

Removing the technical barriers to use of hydrogen in natural gas networks and for (natural) gas end users.

Project Overview

Call year: 2019

Call topic: FCH-04-3-2019 -Hydrogen admixtures in natural gas domestic and commercial end uses Project dates: [January 2020 - December 2021] Total project budget: 4M€

Testing Hydrogen admixture for Gas Applications

% stage of implementation 01/11/2021: 60%

FCH JU max. contribution: 2.5M€ Other financial contribution: 1.5M€

Partners

