PROJECT HYGRID

Flexible Hybrid separation system

for H2 recovery from NG Grids

Fausto Gallucci

Eindhoven University of Technology

https://www.hygrid-h2.eu/

F.Gallucci@tue.nl

- Call year: 2015
- Call topic: H2020-JTI-FCH-2015-1 Development of technology to separate hydrogen from low-concentration hydrogen streams
- Project dates: 01 May 2016
- % stage of implementation 01/9/2021: 100%
- Total project budget: €3,167,710.00
- FCH JU max. contribution: €2,527,710.00
- Other financial contribution: €300,000 from Switzerland
- Partners: Eindhoven University of Technology, Tecnalia, SAES (T), Hygear, HYET, Quantis, Naturgas

HyGrid aims at developing of an advanced high performance, cost effective separation technology for direct separation of hydrogen from natural gas networks. The system will be based on:

Design, construction and testing of an novel membrane based hybrid technology for pure hydrogen production (ISO 14687) combining three technologies for hydrogen purification integrated in a way that enhances the strengths of each of them: membrane separation technology is employed for removing H2 from the "low H2 content" (e.g. 2-10 %) followed by electrochemical hydrogen separation (EHP) optimal for the "very low H2 content" (e.g. <2 %) and finally temperature swing adsorption (TSA) technology to purify from humidity produced in both systems upstream.

The project targets a pure hydrogen separation system with power and cost of < 5 kWh/kgH2 and < 1.5 €/kgH2. A pilot designed for >25 kg/day of hydrogen will be built and tested at industrially relevant conditions (TRL 5).

• Pressure drop of 100 mbar

Final full-size EHP stacks assembled

#PRD2021 #CleanHydrogen

European

(FCH)

European Commission

Some tes

Europea

Hydroge

Some testing results

Membrane code	Membrane	H ₂ permeance	Pressure	H ₂ /CH ₄
	type	[mol/s/m ² /Pa]	exponent[-]	selectivity [-]
Pd1	Pd-Ag	1.18·10 ⁻⁶	0.66	24300
Pd2DS	Pd-Ag	1.35·10 ⁻⁶	0.63	65200
Pd3	Pd-Ag	4.36·10 ⁻⁶	0.58	4280
CMSM1	CMSM	7.02·10 ⁻⁸	1	527
CMSM2	CMSM	5.23·10 ⁻⁸	1	1020

- No concentration polarization effect for CMSM
- Pd-Ag and CMSM can have similar
 H₂ purity at different temperatures
- CMSM economically convenient at higher pressure

Contribution analysis

	HyGrid	thereof manufacturing	thereof operation	PSA	thereof manufacturing	thereof operation
Global warming [kg CO2e]	4.7	1	3.7	8.7	0.7	8
Water consumption [m3]	0.03	0.01	0.03	0.11	0.01	0.11
Human health [DALY]	5.3E-06	3E-06	2.3E-06	8.9E-06	1.4E-06	7.5E-06
Ecosystem quality [PDF.m2.y]	4.1	2.3	1.8	8.3	1.3	7
Resource depletion [MJ]	84.7	13.4	71.3	183	9.1	173.9

European

Commission

HyGrid system optimization

Configuration	Membrane	Membrane	Hydrogen	Purity from	% H ₂	Total	Electricity	Heat
	area 1 [m²]	area 2 [m²]	separated	membrane	from	purity [%]	consumption	consumption
			[kg/day]	[%]	EHC		[kWh/kg _{H2}]	[kWh/kg _{H2}]
А	1.62	-	25	99.92	34.92	99.93	5.19	-
A1	2.92	-	25	99.9876	34.92	99.99	5.05	-
A2	2.80	-	25	99.92	23.13	99.94	4.29	-
A3	1.07	-	25	99.41	34.92	99.42	5.09	-
A4	5.27	-	25	99.00	34.92	99.00	4.36	-
В	2.53	-	25	99.90	34.92	99.91	6.23	11.23
B1	4.22	-	25	99.96	34.92	99.97	6.29	11.23
С	3.85	-	25	99.92	0	99.92	3.94	-
D	2.42	0.5	25	98.75	34.92	99.9997	7.95	-
E	6.32	0.5	25	91.61	34.92	99.99	5.62	-
E1	2.97	0.5	25	96.28	34.92	99.99	6.38	-
E2	2.51	0.62	25	96.11	34.92	99.99	6.30	-
E3	2.23	0.78	25	96.02	34.92	99.99	6.22	-
E4	5.85	0.62	25	91.53	34.92	99.99	5.48	-
E5	5.33	0.78	25	91.40	34.92	99.99	5.40	-
F	-	-	25	-	100	100.00	12.64	-
G	3.67	0.5	25	99.94	32.92	99.95	8.02	11.23

