

MULTHYFUEL project - Multi-fuel refueling stations

Online workshop on Safe Storage of Compressed Gas Hydrogen in road transport applications and related infrastructure

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Elena Vyazmina, D. Houssin, Air Liquide R&D S. Quesnel, Q. Nouvelot , B. Idrissi Ouadghiri, ENGIE S. Pique, B. Weinberger, INERIS D. Torrado, N. Hart, ITM J. L. Saw, HSE S. Montel, Shell J. D. Fonseca, Hydrogen Europe

Contributions from SNAM and ZSW

18 November 2021

MultHyFuel – Purpose and Structure

General description

With increasing demand for FCEV, HRS are required to be upscaled and co-located alongside conventional fuels. However

- Co-location of hydrogen with conventional fuels is not seen in \bullet most safety regulations
- Different approaches are taken by different countries lacksquare

Project Goals

Defining commonly applicable, effective, and evidence-based guidelines to facilitate the construction of HRS in multi-fuel refuelling stations, thanks to

- Practical, theoretical and experimental data
- Active and continuous engagement with key stakeholders

WP1 State of the art review

Preliminary extensive diagnosis of the existing rules, standards and best practices in the domain

WP2&WP3 Analysis and experimentation

New data acquisition through practical experimentation and analysis of information collected

WP3 Synthesis of results

Generate best practice guidance for national implementation of evidence-based policies.

WP4 Engagement plan

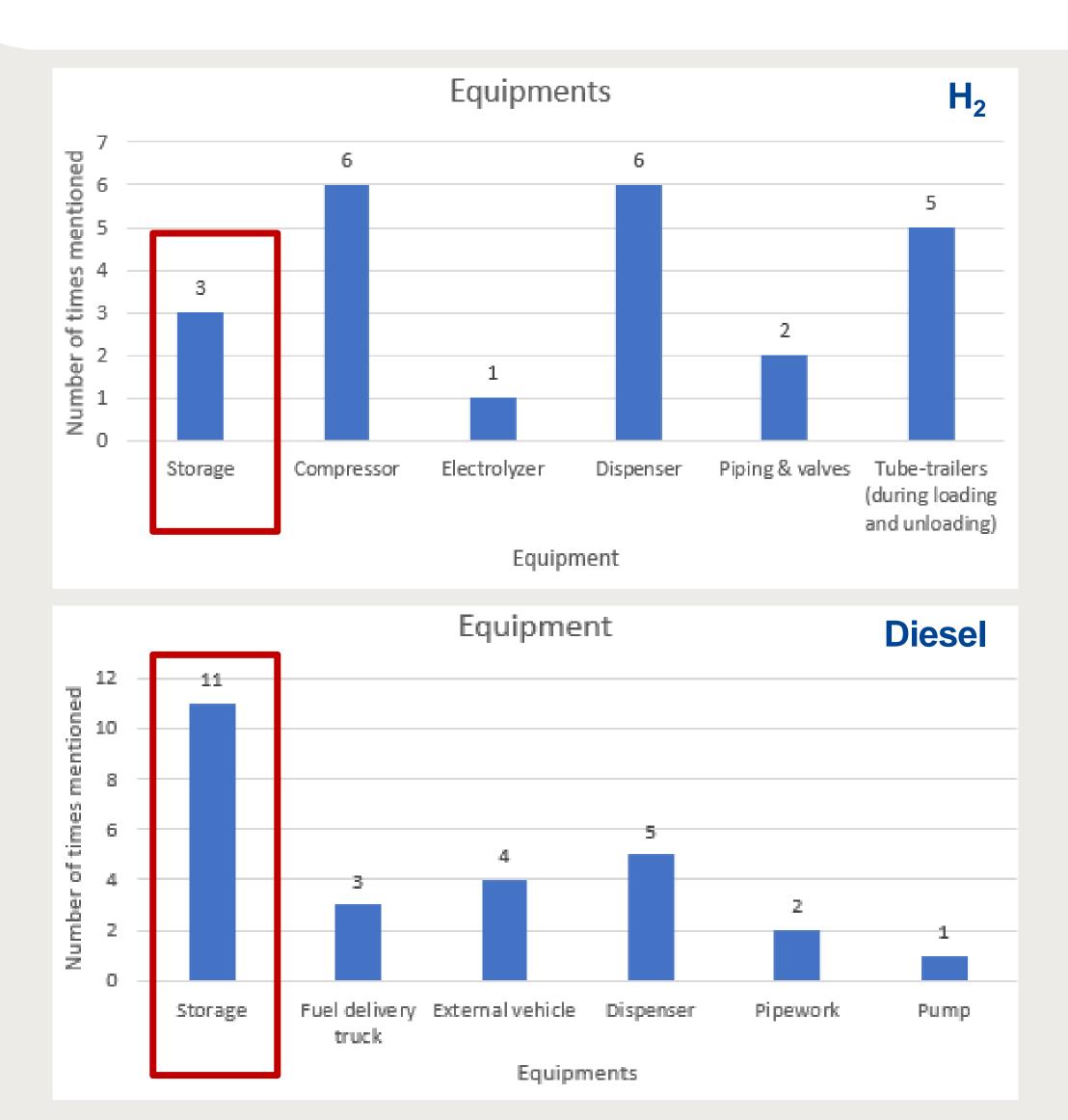
Actively engage a community of stakeholders throughout the process for validation of results and gap identification

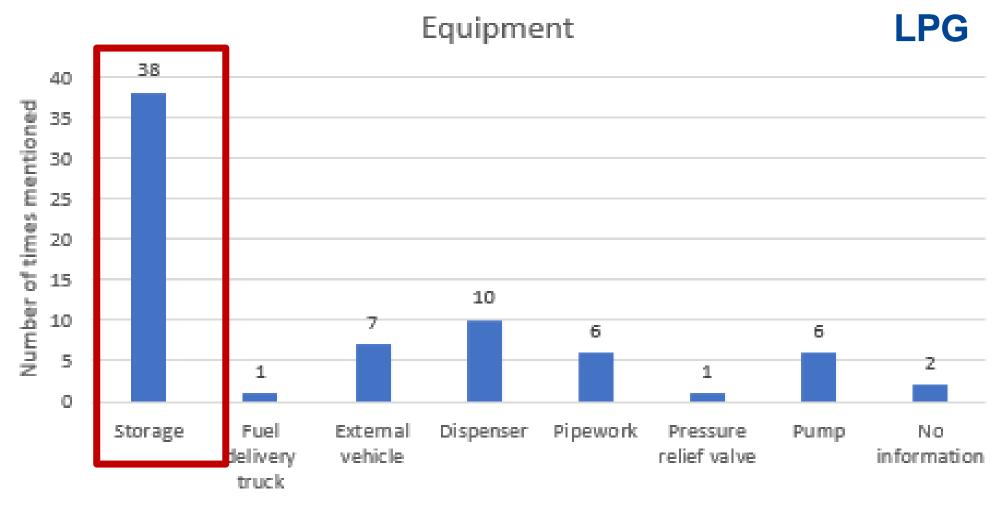
WP3 – SoA and Risk Analysis

General concerns

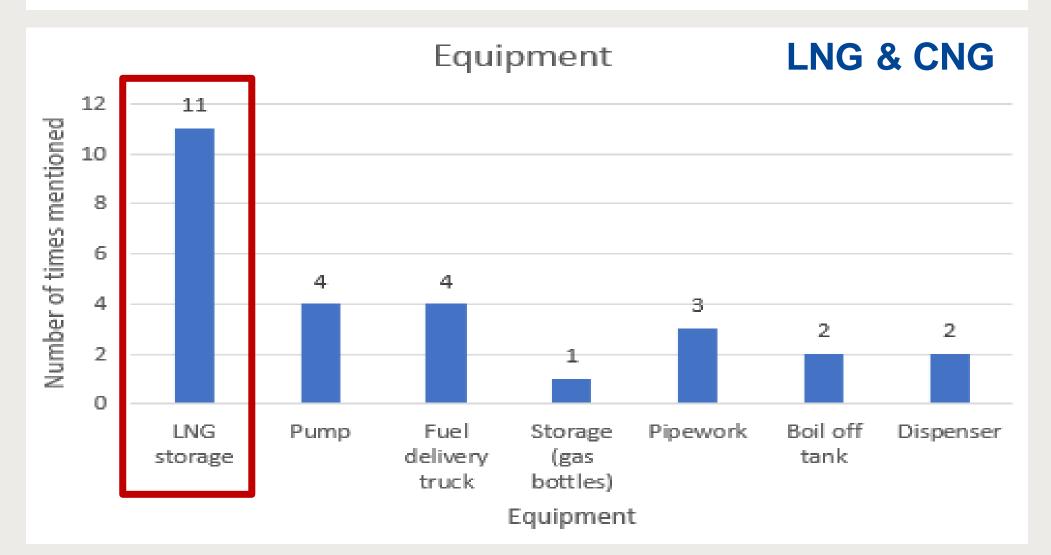
Hazard potentials for process and equipment

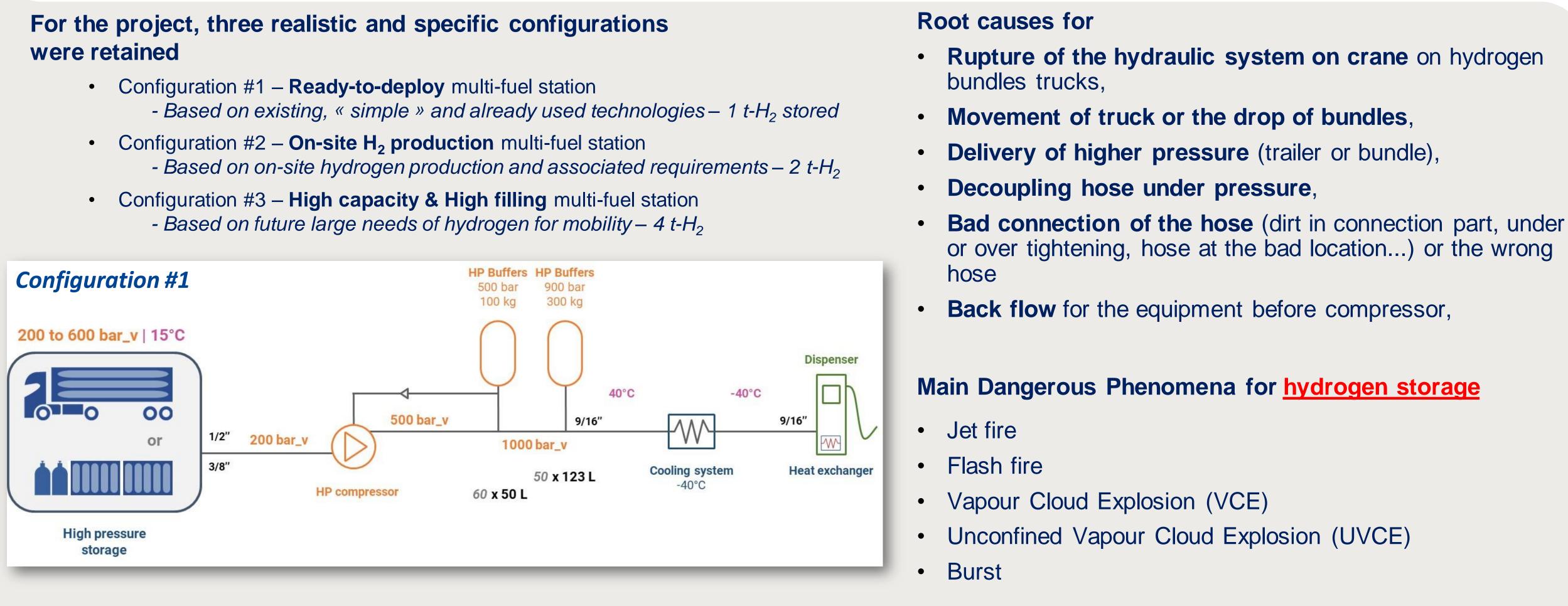
Equipment	Operating conditions	Associated hazards
H ₂ storage		
Stationary storage tank	Operating phase Maintenance	ATEX formation due to H ₂ /air mixture in the o Loss of H ₂ containment Capacity burst Release at vent line exit
		Compression
Compressor	Operating phase Maintenance	Loss of H_2 /oil containment ATEX formation due to H_2 /air mixture in the o Burst of the compressor Oil injection in the H_2 pipe // H_2 in the oil p Leakage of H_2 in coolant (exchanger)
		H ₂ delivery
Mobile storage Trailers / Bundles	Loading, in parking space	Loss of H ₂ containment on trailer or bund Capacity burst Release by TPRD
H ₂ dispensing		
Hose / Piping	Operating phase Maintenance	Burst Loss of H ₂ containment on hose/piping ATEX formation due to H ₂ /air mixture in hose


se/piping



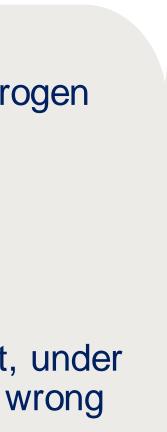
Statistics on accidents – H₂ vs Conventional Fuel


INERIS & H2Tool



HAZard IDentification

Example of HAZID with Configuration #1


- Configuration #2 **On-site H**₂ **production** multi-fuel station
- Based on future large needs of hydrogen for mobility 4 t- H_2

⇒ 33 Major Phenomena for Storage were identified

Example of recommendations for prevention/protection barriers

Existing safety features on HRS: with a focus on the <u>Storage</u>

What	Prevention barrier	Protection barrier
Supply storage: loss on containment on bundles/MCP	- Check the control of H_2 trailers/bundles have been implemented by the supplier	 Fire detection system with clear procedure of what to do for each size leak and DPh (for example isolation system/ move people (depend where is the leak)) Gas detection (ultrasonic system) with clear procedure of what to do for each size leak and DPh (for example isolation system/ evacuation (depending on where the leak is)
Supply storage: release by TPRD	 To review the location of venting of TPRD Safety distance between the canopy and the the tube trailer (layout) Take into account the location of the release (vent line) 	
Supply storage: loss on containment on hose	Check the control of H_2 hose has been implemented by the supplier	 Isolation valve in case of emergency Restrictive orifice Fire detection system with clear procedure of what to do for each size leak and DPd (feetample isolation system/ move people (depend where is the leak)) Gas detection (ultrasonic system) with clear procedure of what to do for each size leak and DPh (for example isolation system/ evacuation (depending where the leak is)
H ₂ buffer: loss of containment on storage/ piping	- Record of fueling cycle and alarm when the maximum cycle is nearly reached	 Fire detection system with clear procedure of what to do for each size leak and DPh (example isolation system/ move people (depend where is the leak)) Gas detection (ultrasonic system) with clear procedure of what to do for each size leak and DPh (for example isolation system/ evacuation (depending where the leak is)
burst of buffer	- Review the design of storage (open structure on the top placed underground)	*DPh Dangero Phenomenon

S. Pique, S. Quesnel, B. Weinberger, Q. Nouvelot, D. Houssin, E. Vyazmina, D. Torrado, J. L. Saw, S. Montel, Preliminary risk assessment of hydrogen refuelling station in a multifuel context, submitted for the 17th EFCE International Symposium on Loss Prevention and Safety Promotion in Process Industries

Elena Vyazmina

International expert / Project Coordinator Air Liquide/ Member of the EHSP Elena.Vyazmina@airliquide.com

For futher information

www.fch.europa.eu www.hydrogeneurope.eu www.nerghy.eu

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

