INN-BALANCE

INNOVATIVE COST IMPROVEMENTS FOR BALANCE OF PLANT COMPONENTS OF AUTOMOTIVE PEMFC SYSTEMS

PROJECT AND OBJECTIVES

The aim of INN-BALANCE was to develop a novel and integrated development platform for developing advanced balance-of-plant components in current fuel-cell-based vehicles in order to improve their efficiency and reliability, reducing costs and presenting a stable supply chain to European car manufacturers and system integrators.

PROGRESS AND MAIN ACHIEVEMENTS

- INN-BALANCE has created an optimised ejector for the automotive fuel cell stack.
- The project has created a high-speed air compressor for the automotive fuel cell.
- It has created an antifreeze module for the automotive fuel cell.

FUTURE STEPS AND PLANS

The project has finished.

QUANTITATIVE TARGETS AND STATUS

| Target source | Parameter | Unit | Target | Target achieved?
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project's own objectives</td>
<td>Power: air turbo compressor</td>
<td>kW</td>
<td>10–12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal management system</td>
<td>°C</td>
<td>- 40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuel cell system's efficiency and lifetime</td>
<td>%</td>
<td>5 (efficiency), 10 (lifetime)</td>
<td></td>
</tr>
</tbody>
</table>
LOWCOST-IC
LOW COST INTERCONNECTS WITH HIGHLY IMPROVED CONTACT STRENGTH FOR SOC APPLICATIONS

PROJECT AND OBJECTIVES
The overall objective of LOWCOST-IC is to contribute to the successful upscaling of the widespread commercialisation of solid oxide cell (SOC) technologies by:

• increasing the robustness of the lifetime of SOC stacks by developing novel high-robustness air electrode contact layers and testing new interconnect coatings in SOC stacks;

• minimising the interconnect development and production cost by introducing cheaper high-volume steel, applying state-of-the-art (SoA) large-scale roll-to-roll manufacturing methods for SOC manufacturing, and developing a novel interconnect shape design route.

PROGRESS AND MAIN ACHIEVEMENTS
Robust contact layers were developed.

FUTURE STEPS AND PLANS
LOWCOST-IC will perform postmortem analysis of the contact layers tested in the stacks. Samples have been cut out from commercial stacks being tested with the new contact material. Postmortem analysis under a microscope will be undertaken shortly.

QUANTITATIVE TARGETS AND STATUS

<table>
<thead>
<tr>
<th>Target source</th>
<th>Parameter</th>
<th>Unit</th>
<th>Target</th>
<th>Achieved to date by the project</th>
<th>Target achieved?</th>
<th>SoA result achieved to date (by others)</th>
<th>Year of SoA target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project’s own objectives</td>
<td>Fracture energy of contact layer</td>
<td>J/m²</td>
<td>5.1</td>
<td>10</td>
<td>✓</td>
<td>1.7</td>
<td>2013</td>
</tr>
<tr>
<td></td>
<td>Area-specific resistance of contact layer at 750 °C</td>
<td>mohm.cm²</td>
<td>15</td>
<td>60</td>
<td>✗</td>
<td>15</td>
<td>2019</td>
</tr>
<tr>
<td></td>
<td>Area-specific resistance of contact layer at 850 °C</td>
<td>mohm.cm²</td>
<td>25</td>
<td>21</td>
<td>✓</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

https://www.lowcost-ic.eu
MAMA-MEA

MASS MANUFACTURE OF MEAS USING HIGH SPEED DEPOSITION PROCESSES

PROJECT AND OBJECTIVES
The task of MAMA-MEA was to develop an innovative additive layer deposition process integrating all main catalyst-coated membrane components (membrane, catalyst layers, sealing) using a single, continuous roll-to-roll manufacturing process for the proton-exchange membrane fuel cell industry. This will enable a more than 10-fold increase in the volume manufacturing rate compared with state-of-the-art processes, while also increasing key material utilisation, and reducing the quantity of materials and their costs. The project was successfully completed by 30 June 2021.

PROGRESS AND MAIN ACHIEVEMENTS
• MAMA-MEA completed the engineering design.
• The project evaluated deposition techniques.
• It performed experimental validation.

FUTURE STEPS AND PLANS
The project is finished. The target manufacturing speed was reached; however, additional process optimisation is required to increase the lifetime.

Project ID 779591
PRD 2022 Panel 7 – Supply chain
Call topic FCH-02-8-2017: Step-change in manufacturing of fuel cell stack components
Project total costs EUR 3 189 816
Clean H₂ max. contribution EUR 3 189 816
Project period 1/1/2018 – 30/6/2021
Coordinator Technische Universität Chemnitz, Germany
Beneficiaries System SpA, Johnson Matthey Fuel Cells Limited, Inea Informatizacija Energetika Avtomatizacija Doo, Nedstack Fuel Cell Technology BV, Università degli Studi di Modena e Reggio Emilia, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung EV

https://www.mama-mea.eu

QUANTITATIVE TARGETS AND STATUS

<table>
<thead>
<tr>
<th>Target source</th>
<th>Parameter</th>
<th>Unit</th>
<th>Target</th>
<th>Target achieved?</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWP 2017</td>
<td>CAPEX</td>
<td>€/kW</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lifetime</td>
<td>hours</td>
<td>20 000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Degradation rate</td>
<td>%/1 000 h</td>
<td>< 1</td>
<td></td>
</tr>
<tr>
<td>Project’s own objectives</td>
<td>Production/web speed</td>
<td>lm/s</td>
<td>0.84</td>
<td></td>
</tr>
</tbody>
</table>

© European Union, 2022
Reproduction is authorised provided the source is acknowledged.
For any use or reproduction of elements that are not owned by the European Union, permission may need to be sought directly from the respective rightholders.