

Hydrogen Storage and Distribution

Dionisis Tsimis Claudiu Pavel, Nikos Lymperopoulos, Pietro Caloprisco Project Officers

Session on Hydrogen Storage and Distribution

16th Nov. 11:30 - 13:00

Hydrogen Distribution and Storage

Hydrogen Storage and Distribution

Gaining traction within the program

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

Aboveground storage
H2 in the natural gas grid
Hydrogen Transport
Underground Storage

Compression, purification and metering solutions

H2 refuelling stations

Liquid H2 carriers

Hydrogen Storage and Distribution

Balanced support to SMEs, Industry and research members

JU Funding per type of beneficiary

JU Funding per type of Beneficiary

■ HES ■ OTH ■ PRC ■ REC ■ SME

H₂ Underground Storage

Salt Caverns and Porous Media

Salt Caverns - EU Potential

Up to 50 TWh H₂

Hydrogen already stored in UK and US sites

Technical challenges remain with respect to cyclability and higher injection/withdrawal rates

Source: IEA Task 42 UHS Technology monitoring report

Challenges

H₂ Underground Storage

hypster ⊘

Cycling testing of Salt cavern storing hydrogen

2020

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

Research cavern located in Etrez, France

1MW PEMEL installation being finalised

 H_2 -ready wellhead in place. Testing of cavern with N_2 , H_2 to be injected end Nov. 2023

Storage of 3 th hydrogen. Cyclic testing of cavern for 100 days between 150 and 110 bar using brine

2023

Project Planned (Signature preparation) Demonstration in a salt cavern site of at least 1,000 tn H₂

Underground Hydr RESEARCH DAYS

Underground Hydrogen Storage in porous reservoirs

Feasibility and techno-economic assessment

2021

15-16 NOVEMBER

Mapping H_2 storage sites and characteristics of reservoirs (geochemistry, flow transport, etc.)

Extensive sampling and microbiological lab experiments

Techno-economic feasibility, environmental and societal impacts studies

Ranking of sites based on "suitability mark" and LCOS

2023

Project Planned (Signature preparation) Demonstration in a depleted gas field of at least 1,000 tn H₂

Aboveground Storage

Focused so far on the development of metal hydride solutions

2018

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

- System Capable of storing 44kg H₂ @ 1.1%_w
- TiFe-based intermetallic alloys coupled to phase change materials
- Energy for storing/releasing H2 reduced by 66%
- Low pressure storage 40bar
- <2% gravimetric capacity loss in 250 cycles

Hydrogen in the Natural Gas grid

Connecting low-cost hydrogen production to demand centers across Europe

//EU HYDROGEN

RESEARCH DAYS

July 2023 Update: At 2030 - 32,000 km of pipelines foreseen 52% of which are going to be repurposed NG pipelines

detection

Co-funded by

the European Union

P_{CS}

LCOH€/kg/1000km

Hydrogen in the gas grid

Facilitating the formation of the backbone of a pan-European grid where the existing gas grid could be partially re-purposed

2019

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

- 2 experimental campaigns run
- Effects of hydrogen on API 5L steels, valves etc
- High pressure testing platform
- Blends up to 20%H $_2,30\%$ and 100% H $_2$

2022

- Impact of 100% H₂ on non-steel metallic
- Focusing on low pressure distribution <16 bar
- Results will be fed to a publicly available database

Clean Hydrogen Partnership

2023

- Select steel specimens that cover >70% of the EU grid
- Impact of 100% H₂ on these components
- Harmonized testing protocols
- Results will be fed to a publicly available database

Co-funded by the European Union

Liquid Hydrogen Carriers

Enabling the liquid hydrogen supply chain infrastructure

Hydrogen Carriers

Exploring both LOHCs and Ammonia for long distance transport

Hydrogen Refuelling Stations

Comprehensive approach to accommodate HD applications

 Compression Broad scope of compression technologies tensure HRS are fit for purpose Scaling up the hybrid compression concept for lab to demonstration (TRL7) Validate its ability to operate from 200kg/day to 1,400kg/day 		COSMHYC ^{XL}	COSNHYC DEMO
 Broad scope of compression technologies to ensure HRS are fit for purpose Scaling up the hybrid compression concept for lab to demonstration (TRL7) Validate its ability to operate from 200kg/day to 1,400kg/day Liquid H2 		Compression	ı
Liquid H2	 Broad scope ensure HRS Scaling up t for lab to de Validate its 200kg/day t 	e of compression are fit for purpo he hybrid comp emonstration (T ability to opera to 1,400kg/day	n technologies to ose pression concept (RL7) ate from
2022		Liquid H2	
2023	2023		
 Develop and demonstrate a large LH2 HRS Delivery flowrates (>5 TPH); Boil-off management 	Develop and	demonstrate a	a large LH2 HRS

Conclusions

Diverse research activities for the support of a logistical infrastructure for hydrogen

Underground storage gaining a prominent role in the partnership. First demonstrations starting now in Salt Caverns. Soon to be scaled-up

Facilitating the creation of the European Hydrogen Backbone with targeted research

First proof-of-concepts tested on LOHCs. Opening the scope of research to both liquid H2 and ammonia

Addressing the high demands that will come from heavy-duty vehicle refuelling

