PROJECT RUBY Robust and reliable general management tool for performance and dUraBility improvement of fuel cell stationarY unit

Cesare Pianese University of Salerno – I pianese@unisa.it info@rubyproject.eu

Web: www.rubyproject.eu | <u>Twitter</u>: @RUBYprojectEU | <u>Linkedin</u>: company/RUBYprojectEU

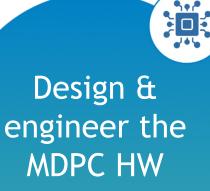
RUBY

//EU HYDROGEN

//EU HYDROGEN RESEARCH DAYS 15-16 NOVEMBER

Project Overview

- Call year: 2019
- Call topic: FCH-02-8-2019: Enhancement of durability and reliability of stationary PEM and SOFC systems by implementation and integration of advanced diagnostic and control tools
- Project dates: 01/01/2020 31/12/2024
- % stage of implementation 01/11/2023: 80 %
- Total project budget: 2 999 715.00 €
- Clean Hydrogen Partnership max. contribution: 2 999 715.00 €
- Other financial contribution: $0 \in$
- Partners: (11 Partners 7 Countries) University of Salerno | Commissariat à l'énergie atomique et aux énergies alternatives | Ballard Power Systems Europe A/S | Bitron SPA; Institut Jozef Stefan | Teknologian tutkimuskeskus VTT Oy I Europäisches Institut für Energieforschung EDF-KIT EWIV | Université Bourgogne Franche-Comté | École Polytechnique Fédérale de Lausanne | Fondazione Bruno Kessler | Sunfire Fuel Cells GmbH



//EU HYDROGEN RESEARCH DAYS 15-16 NOVEMBER

Main Objectives

Improve FCS performance and durability

Experimental campaigns for characterization and testing Advanced management

(smart-grid/ maintenance)

Advanced algorithm combining monitoring, diagnosis, prognosis, control and mitigation actions HW for algorithms application on PEM & SOFC technologies towards industrial scalability

Clean Hydrogen

Partnership

Perform dedicated experiments for stacks and system & MDPC tool prototype in environment

Supervisory for remote monitoring towards smart-grid interaction & predictive maintenance

Project Summary

Main Objectives

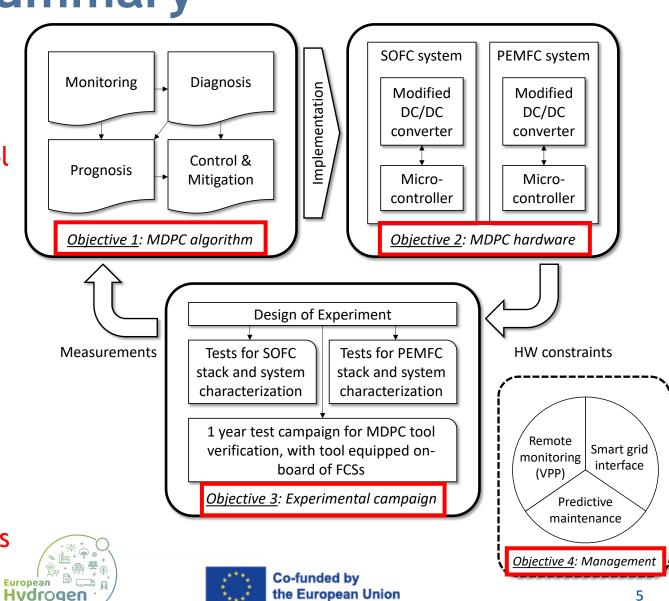
- Monitoring Diagnostic Prognostic Control (MDPC) Tool (HW & SW)
- 4 Objectives

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

SOA


- Advanced algorithms/tool
- Use of EIS & RTO on systems (on-field)
- Know How on advanced HW (Power Electronics) for FC

Application and market area

- Stationary FC & electrochemical device
- Potential use for automotive & batteries

Clean Hydrogen

Partnership

Key concept: on-field EIS & RTO

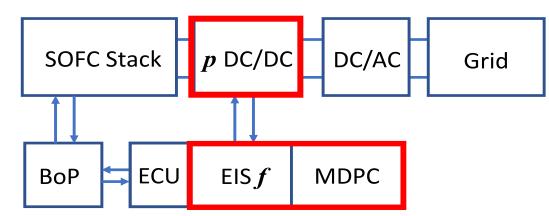
RUBY MDPC tool will improve FCS

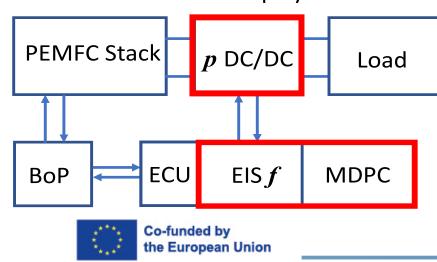
- 1. Performance and durability.
- 2. Management for Remote monitoring in <u>smart-</u> grid & Predictive maintenance.

Key functions implemented on board:

- 1. Advanced stack Monitoring via EIS.
- 2. Stack diagnostics via EIS.
- 3. <u>BoP component Condition Monitoring.</u>
- 4. BoP Fault Detection and Isolation.
- 5. Prognostics of stack for <u>Remaining Useful Life.</u>
- 6. Real Time Optimization control.
- 7. <u>Mitigation</u>.

//EU HYDROGEN


RESEARCH DAYS


15-16 NOVEMBER

European

Hvdrogen

Ballard Backup System

Sunfire µ-CHP System

6

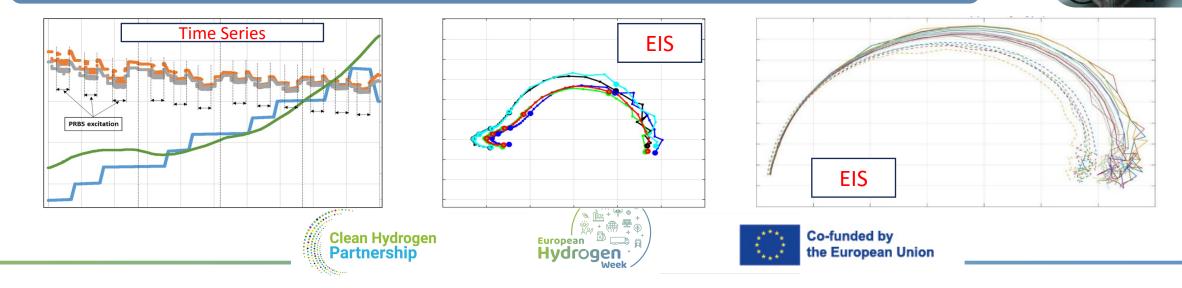
Main Achievements 1/4

Testing activity

SOFC Stack & System: 10000+ h in nominal & faulty

- 32 EIS spectra measured on stack in hot module and system
- 700+ hours of hot module operations with 74 EIS spectra

PEMFC: Stack (3800 h) System (1000 h) in nominal & faulty

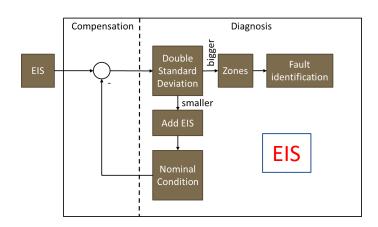

• 100+ EIS spectra measured

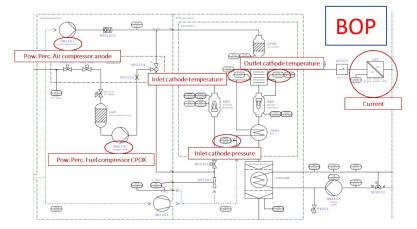
//EU HYDROGEN

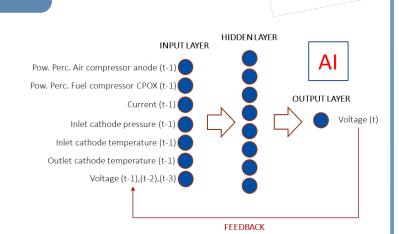
RESEARCH DAYS

15-16 NOVEMBER

Database of features for monitoring & diagnosis from EIS spectra





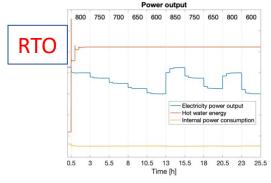

Main Achievements 2/4

Algorithms ready for on-field testing

All algorithms & SW tested for RUBY-box implementation

(a)

YSZ

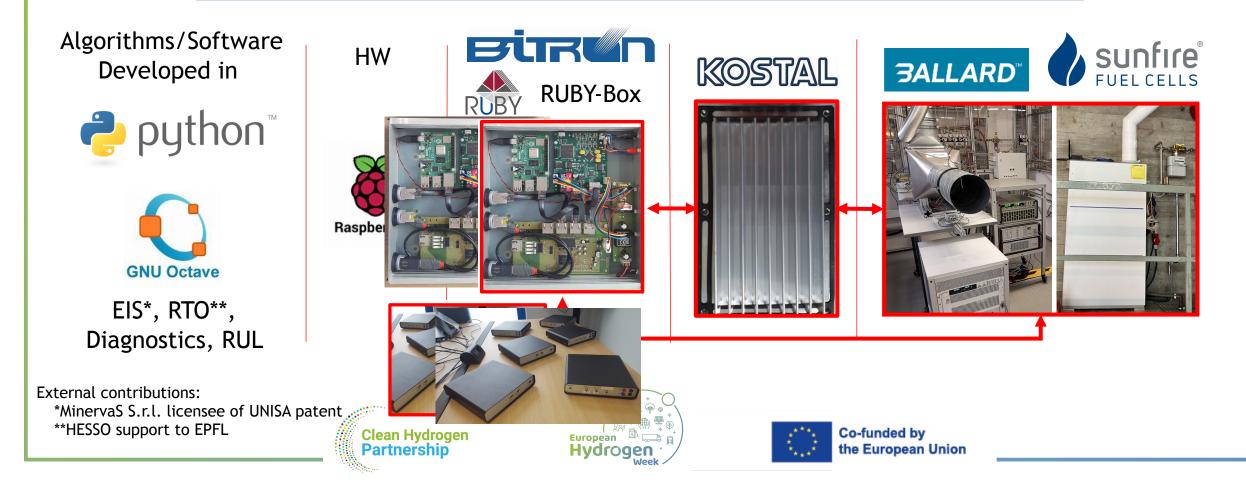

8 um

Multi-Scale

15 µm

8 µm

(b)



//EU HYDROGEN RESEARCH DAYS 15-16 NOVEMBER

Main Achievements 3/4

MDPC Tool tested and ready for implementation

RUBY-Box (HW tool) & Advanced Power Electronics (converter)

Main Achievements 4/4

One-Year validation in real condition

µ-CHP & Backup installed and operational on sites, ready for MDPC

Aigle (CH)

Clean Hydrogen Partnership

PEMFC system running at EIFER in emulated environment

 μ -CHP units installed at

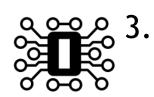
VTT and at GAZNAT in

Co-funded by the European Union

RISKS

EU HYDROGEN

RESEARCH DAYS


15-16 NOVEMBER

1. Pandemics limited the interaction among the partners and delayed the experimental activity.

RISKS

- 2. One industrial partner withdrew.
- 3. Electronic components shortage (pandemics).

SOLUTIONS

- 1. Remote interactions were strengthen, the databases of experiments (EIS, long run, other projects) and models were used to sketch the new algorithms.
- 2. The termination & accession of the new partner was successfully managed in 5 months thanks to the support of the JU.
- 3. Luckily, the problem was recovered, otherwise it would have cost more.

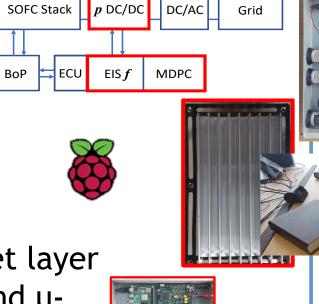
12

Main Challenges

CHALLENGES

15-16 NOVEMBER

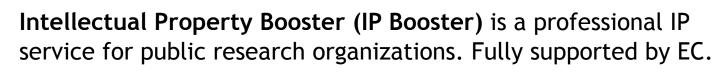
- 1. Adapt experimental activity to the new μ -CHP of SUNFIRE.
- 2. New scheme based on a single DC/DC converter with EIS features, which can be installed on μ -CHP & Backup.
- 3. Re-configure the Power Electronics to perform Stack EIS.
- 4. Final decision led to the outsourcing of a low-cost DC/DC converter compatible with different stacks/technologies.
- 5. Re-design the FW of the RUBY-Box with a new full ethernet layer for communication among RUBY-Box, power electronics and μ -CHP controller.



IS-16 NOVEMBER

BOOSTER

Clean Hydrogen


Partnership

Exploitation Plan

Exploitation

OVA

- SUNFIRE will explore the integration of the converter and implement the MDPC tool.
- BITRON can exploit RUBY-Box as monitoring unit; the high-quality signal treatment circuits, may find applications in future products (e.g., energy meters, EV charging stations, electrochemical device).
- EPFL & HESSO will start an exploitation process for the RTO algorithm to be used on FC controller (Innovation Radar).
- UNISA, BITRON & MinervaS* will explore the integration of the EIS-based monitoring and diagnostic functions within the RUBY-Box. UNISA is applying a patented algorithm for EIS parameter identification, the patent is licensed to the Start-up MinervaS (Innovation Radar, IP Booster).

Expected Impact

Impact of MDPC tool (HW & SW)

Improve performance & reliability:

reduce TCO

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

help market penetration

Better management W/ EIS & RTO functions:

- improve RUL by 25%
- keep average efficiency at 35% until EoL
- availability ≥98% & MTBF > 45,000 h
- reach 15 years of operations
- low unit cost

MDPC paves the way towards advanced remote monitoring:

- help predictive maintenance
- easy integration in smart grids

PROBLEM

Co-funde

SOLUTION

Co-funded by the European Union

Lean Business Canvas

UNFAIR ADVANTAGE

UNIQUE VALUE PROPOSITION

			Ξ,	-	
Today PEM and SOFC systems costs are too high compared to conventional stationary solutions (μ- CHP and BUP), which prevents addressing large parts of the potential market. In addition, performance needs to be increased in terms of efficiency, durability and lifetime.	Advanced monitoring (EIS via sine/PRBS stimuli) not available on large scale manufactured products. Integrated approach of MDPC; Link BOP to stacks for better lifetime; General/flexible hardware & algorithms. KEY METRICS Electric efficiency: 35% (µ-CHP)	stimuli) not available on manufactured products. approach of MDPC; o stacks for better exible hardware & 5. HCS		Team with more than 10 years of experience on the topics for fuel cells; Multidisciplinary group; High development costs for newcomers; Reduce TCO by: Improving efficiency; Maximize efficiency; Increase durability. CHANNELS	Prime target: • µ-CHP commercial • BUP systems Secondary target: • Residential • Industrial • Energy storage • Automotive • Recharging station
• diagnosis and control by conventional measurements	45% (Backup) • Lifetime expectation: 12 years (µ-CHP)			Established network of SUN and BPSE; Enhanced by RUBY Consortium	EARLY ADOPTERS • Involved project industries
Large amount of costly sensors	15 years (Backup) • Availability: 99% (μ-CHP) 99.999% (Backup)	HIGH-LEVEL CONCEPT MDPC tool > OBD-II fo	S1512.55	efforts in WP8. • BITRON will spread the technology out of fuel cell sector	
COST STRUCTURE			REVENUE STREAM	IS	
MDPC tool prototype: > 2000€ MDPC tool on the market: < 3% of Te MDPC licenses for manufacturer: < 1			• SUN: sales of complete μ -CHP SOFC systems; • BPSE: sales of complete Backup PEM systems; • BITRON: sales of EIS board for converters or external EIS box.		

CUSTOMER SEGMENTS

IDENTIFICATIONS & Dissemination 1/3 Communications & Dissemination 1/3 IDENTIFICATION

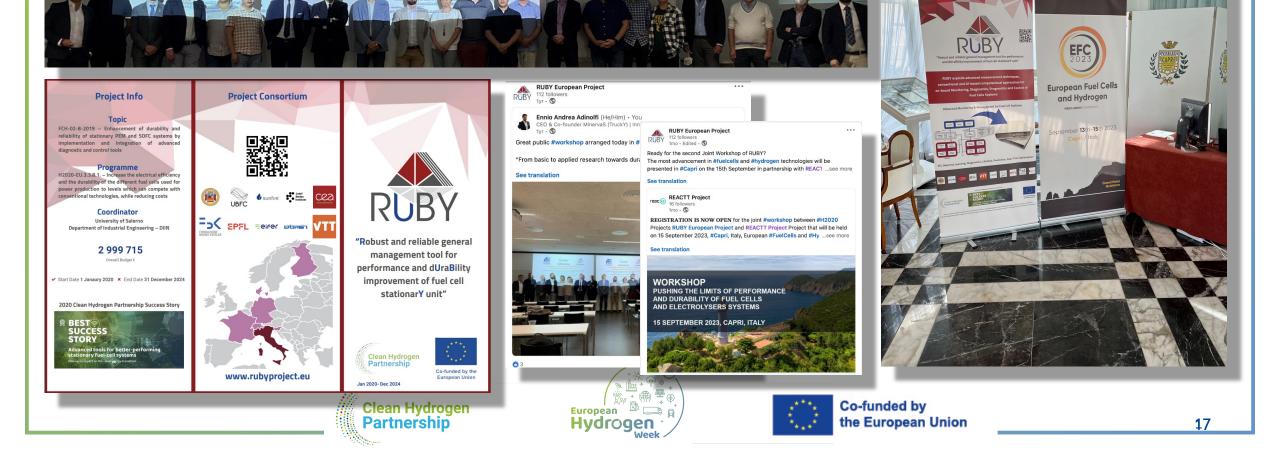
Internet & Social Media

Web: www.rubyproject.eu | X (Twitter): <a>@RUBYprojectEU | Linkedin: <a>company/RUBYprojectEU

Newsletters: 3 issues; 700+ recipients

Workshops (50+ Pax, 28 Presentations, 10+ Countries, 6 Companies, 10 Research/Universities)

- 1. From Basic to Applied Research Towards Durable and Reliable FC
 - Workshop jointly organized with H2020 Project AD ASTRA
 - 5 July 2022 Lucerne (CH) KKL European Fuel Cell Forum 2022
- 2. <u>Pushing the Limits of Performance and Durability of Fuel Cells &</u> <u>Electrolysers Systems</u>
 - Workshop jointly organized with H2020 Projects REACTT
 - 15 Sept. 2023 Capri (Italy) European Fuel Cells & Hydrogen 2023



Communications & Dissemination 2/3 IS-16 NOVEMBER

Scientific Pubblications & Presentations

12 Papers on Applied Energy, ECS Transactions, Journal of Power Sources, IEEE Transactions 5 Presentations and 6 Conferences

Deliverables available on the web site

- 55 Deliverables have a public version (one page)
- Public Deliverables 9
- Extended Periodic Report publicly available on the web (@M23, @M43) 2

Students and Theses

18 - 4 PhD; **8** MSc; **6** BSc

PROJECT RUBY Robust and reliable general management tool for performance and dUraBility improvement of fuel cell stationarY unit

Cesare Pianese University of Salerno – I pianese@unisa.it info@rubyproject.eu

THANK YOU

Web: www.rubyproject.eu | <u>Twitter</u>: @RUBYprojectEU | <u>Linkedin</u>: company/RUBYprojectEU

I/EU HYDROGEN

RDBY

