

REMOTE Remote area Energy supply with Multiple Options for integrated hydrogen-based TEchnologies

Prof. Massimo Santarelli

Politecnico di Torino (POLITO)

https://www.remote-euproject.eu/ massimo.santarelli@polito.it

I/EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

Project Overview

Call year: [2017]

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

Call topic: H2020-ITI-FCH-2017-1 FCH-02-12-2017 **Demonstration** of fuel cell-based energy storage solutions for isolated microgrid or off-grid remote areas

Total project budget: 6 740 031,40 €

REMOTE

% stage of implementation 01/11/2023: 100%

Clean Hydrogen Partnership max. contribution: 4 995 950,25 €

the European Union

countries, 11 partners from industry, research and university

Project Summary

VRE-based P2P system for remote communities

1. Diesel engines

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

high fuel cost, fuel dependence, CO₂ emissions

2. Grid connection (when feasible) high installation costs, invasive works, frequent outages

Why considering P2P hybrid Power-to-Power (P2P) systems, based on hydrogen in hybrid configuration with closed batteries?

- To decrease local pollution
- To reduce the cost of electricity
- To enhance the energy autonomy
- To improve the reliability of the electricity service
 Clean Hydrogen Partnership

Rye (N) Off-grid Non-Integrated P2P RES: PV (85 kW) + wind (225 kW) P2G: 50 kW (PEM) G2P: 100 kW (PEM) Hydrogen storage: 37 m³ (30 bar) Battery: 550 kWh (Li-ion) Biofuel generator: 45 kW

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

Example of operation DEMO-Norway: night&day in Feb 2021

During night:

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

- WT is producing @ low power (< 30 kW)
- FC is producing when SOC is < 30%.

 FC setpoint can be fixed (cycle charging) or adapted to the load (load following)

SOC Battery SOC: 25%-30% FC Power: 0-20-40 kW

During day:

- PV produces during the day (short period, it's February in Norway) and WT production decreases
- Battery is discharged and then excess PV is used to recharge it. The FC is set at lower setpoint (20 kW) thanks to PV.

PV Power: 0-30 kW Genset Power: 0 kW

Agkistro (GR) Micro-grid Integrated P2P RES: Hydroelectric 0.9 MW P2G: 25 kW (ALK) G2P: 50 kW (PEM) Hydrogen storage: 12 m³ (30 bar) Battery: 92 kWh (Li-ion)

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

Avg. FC efficiency up to 51%

Avg. EL efficiency up to 58%

KPI: round-trip efficiency in DEMO-Greece

	$\eta_{ ext{EL}}*$	$\eta_{ ext{FC}}$ *	$\eta_{RT,total}$ **
Oct (2020)	55%	43%	41%
Nov (2020)	0%	0%	-
Dec (2020)	55%	0%	84%
Jan	0%	0%	-
Feb	57%	51%	86%
Mar	57%	42%	87%
Apr	53%	43%	47%
May	53%	46%	59%
June	53%	0%	72%
July	54%	47%	58%
Aug	56%	0%	80%
Sept	55%	44%	-
Oct	0%	0%	-
Nov	55%	48%	66%
Dec	0%	0%	-
2022	58%	0%	93%

Clean Hydrogen Partnership

Co-funded by the European Union

RESEARCH

//EU HYDROGEN

Gran Canaria (ES) Micro-grid Non-Integrated P2P RES: PV (100 kW) + wind (20 kW) P2G: 80 kW (ALK) G2P: 100 kW (PEM) Hydrogen storage: 50 kg (200 bar) Battery: 200 kWh (Li-ion)

Clean Hydrogen Partnership

Some conclusions

RESEARCH DAYS

//EU HYDROGEN

Technical and Environmental (e.g. Norway)

- ✓ 13 months, 7691 hours of data recorded
- ✓ RES production: 158 MWh (104 wind + 54 PV) + biofuel genset 60 MWh

✓ RES use:

Directly to load: 38 MWh (24%) To battery: 96 MWh (61%) To electrolyzer: 18 MWh (12%) To auxiliary: 6 MWh (4%)

//EU HYDROGEN RESEARCH DAYS 15-16 NOVEMBER

Deployment

Following the completion of the R&I project, *next stages* (deployment)

Technology available and demonstrated at smallmedium scale (around 1 MW)

Large potential market(s)

- Off-grid solutions (e.g., islands, remote areas)
- Isolated-micro-grids (RESbased areas with connection to the electric grid)
- Smart energy districts inside municipalities
- Grid balance in smart-grid solutions (mainly, inside municipalities)

In different areas of the World

Support for scale-up of the technologies and system integration

I MV

Prospects

Global business allowing large emission saving

Clean Hydroge Partnership

EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

Thousands of populated islands and mountain communities around the World that rely on diesel generators to produce electricity

Only considering islands, around **750 million inhabitants** around the World are involved.

Save the emissions of 1.5 GtonCO₂/year

Co-funded by the European Union

Dissemination and Awards

Available online at www.sciencedirect.com ScienceDirect HYDROGEP

journal homepage: www.elsevier.com/locate/he

//EU HYDROGEN

RESEARCH DAYS

Life cycle assessment of a renewable energy system with hydrogen-battery storage for a remote off-grid community

M. Gandiglio ^{a, 5,1}, P. Marocco ^{a,1}, I. Bianco ^b, D. Lovera ^a, G.A. Blengini ^b, M. Santarelli ^a

LAS PALMAS DE GRAN CANARIA SPAIN

ECOS 2023 will take place in the week June 25 - 30, 2023 at the Auditorio Alfredo Kraus, in Las Palmas de Gran Canaria, Spain

European Sustainable Energy Week 2020

#EUSEW2020 @euenergyweek · 6h

The winner of the #EUSEW2020 Innovation Award 🟆 is REMOTE! Congratulazioni to the project providing #renewable #energy to remote places in Europe! 🥟 bit.ly/316GtoM

Mostra questa discussione

CONGRATULATIONS

FOR WINNING THE #EUSEW2020 INNOVATION AWARD!

Winner of the Innovation Award

SIOS Innovation Award 2023

Develop an Automatic Climate Station prototype for remote sites observations in the Arctic

Clean Hydrogen Partnership

Thanks REMOTE Team!!

