

HELIOS Stable high hydrogen low NOx combustion in full scale gas turbine combustor at high firing temperatures

Roy Hermanns

Eindhoven University of Technology

Email: r.t.e.hermanns@tue.nl

- Call year: 2022
- Call topic: HORIZON-JTI-CLEANH2-2022-04-04 -

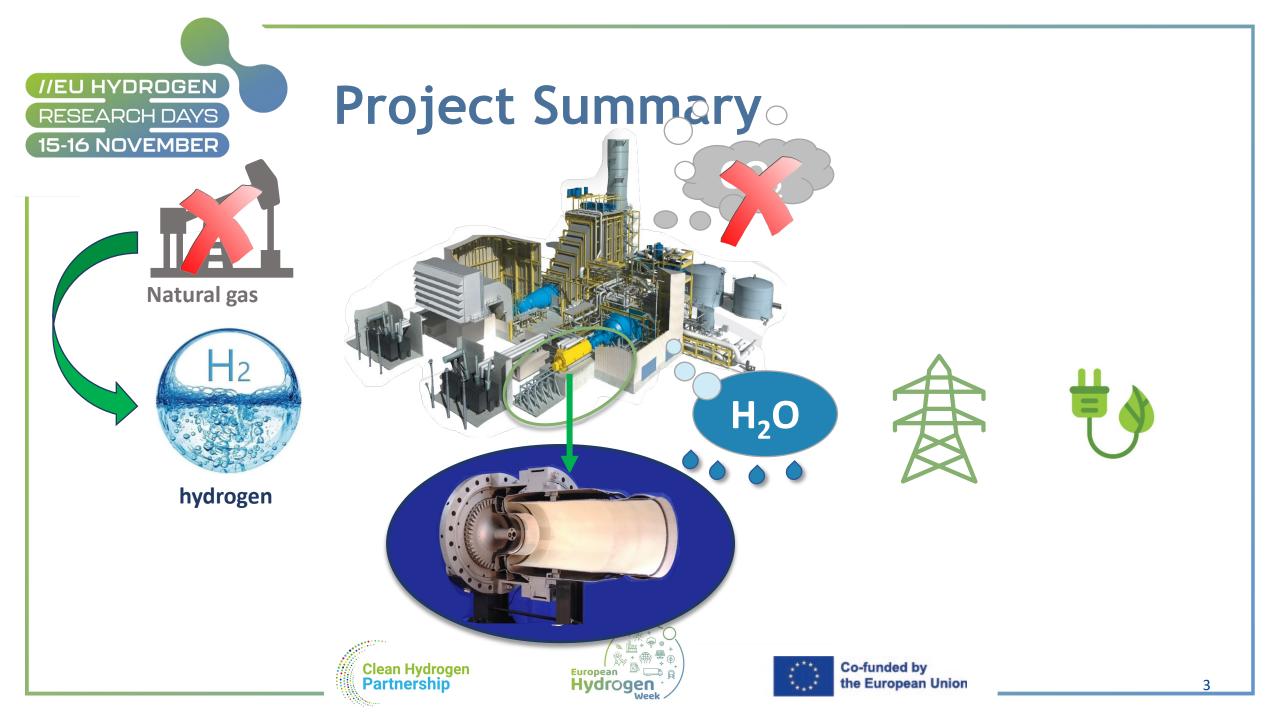
Dry Low NOx combustion of hydrogen-enriched fuels at high-pressure conditions for gas turbine applications

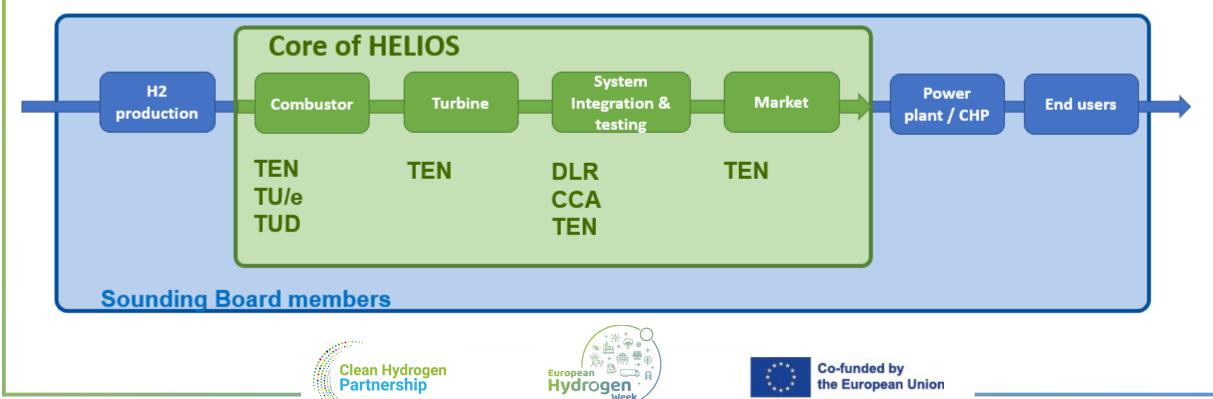
- Project dates: 01/03/2023 28/02/2027
- % stage of implementation 01/11/2023: 10%
- Total project budget: 4M€
- Clean Hydrogen Partnership max. contribution: 4M€

Clean Hydrogen

Partnership

- Other financial contribution: -
- Partners:





Centro Combustione

HELIOS - Ambition is to enable dry Low NOx combustion of hydrogen-enriched fuels in gas turbines capable of operating the system from 100% natural up to 100% hydrogen and any mixture in between with drv low NOx emissions.

HELIOS - Objectives IS-16 NOVEMBER

- Enable Low NOx combustion of hydrogen-enriched fuels in gas turbines
- Low NOx emissions (sub 9ppmv)
- Operating the system at any mixture between 100% natural gas and 100% hydrogen
- Modify an existing combustor to operate (safely) on 100% H2 at high firing temperatures
- Based on the FlameSheet[™] technology that has been developed in recent years by Thomassen Energy
- The combustor can be used as a newly built or retrofit option for existing gas turbine systems on the market ranging from 1MW to 500MW
- The combustor will be applicable to all industrial and heavy systems of MHI, GE, Siemens, as well as industrial scale OPRA gas turbines.

Project Progress/Actions - Aspects

Achie	evement to-date	PROJEC START VAL					PROJECT TARGET VALUE
				25%	50)% 75%	
#	Parameter	Unit	State of the Art 2020	Target 2024	Target 2030		
1	H ₂ range in gas turbine	% mass	0 - 5	0 - 23	0 - 100		
	fuel	% vol.	0 - 30	0 - 70	0 - 100		
2	NO _x emissions		(30% vol H ₂)	(70% vol H ₂)	(100% vol H ₂)		
		NO _x ppmv @ 15%O ₂ /dry	<25	<25	<25		
		NO _x mg/MJ fuel	31	29	24		
3	Max. H ₂ fuel content	% mass	0.7	3	100		
	during start-up	% vol.	5	20	100		
4	Max. efficiency reduction in H ₂ operation	% points	10@30% H ₂	10@70% H ₂	10@100% H ₂		
5	Minimum ramp rate	% load / min	10@30% H ₂	10@70% H ₂	10@100% H ₂		Terrente 2024 2020
6	Ability to handle H ₂	% mass / min	±1.4	±2.21	±5.11		Targets 2024-2030
	content fluctuations	% vol. /min	±10	±15	±30		according SRIA
	C	lean Hydrogen artnership	Europe			Co-funded by the European Union	6

I/EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

IEU HYDROGEN RESEARCH DAYS 15-16 NOVEMBER

- Website <u>http://H2gt-helios.eu</u> (under construction)
- LinkedIn <u>https://www.linkedin.com/company/eu-project-helios</u>
- HELIOS is presented as showcase to members of the European Parliament Committee on Industry, Research and Energy (ITRE)

Co-funded by

the European Union

Thank you!

HELIOS

