H2PORTS First application of hydrogen technologies in port handling equipment in Europe

Aurelio Lázaro, PhD

Fundación Valenciaport

Project Website

alazaro@fundacion.valenciaport.com

PORTS

I/EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

Project Overview

Call year: 2018

Call topic:

FCH-03-1-2018 - Developing Fuel Cell applications for port/harbour ecosystems

Project dates: [01/01/2019 - 31/12/2024]

Total project budget: [4.117.197,50 €]

H2PORTS

Stage of implementation 01/11/2023: [80 %]

Clean Hydrogen Partnership max. contribution: [3.999.947,50 €]

The Port of Valencia

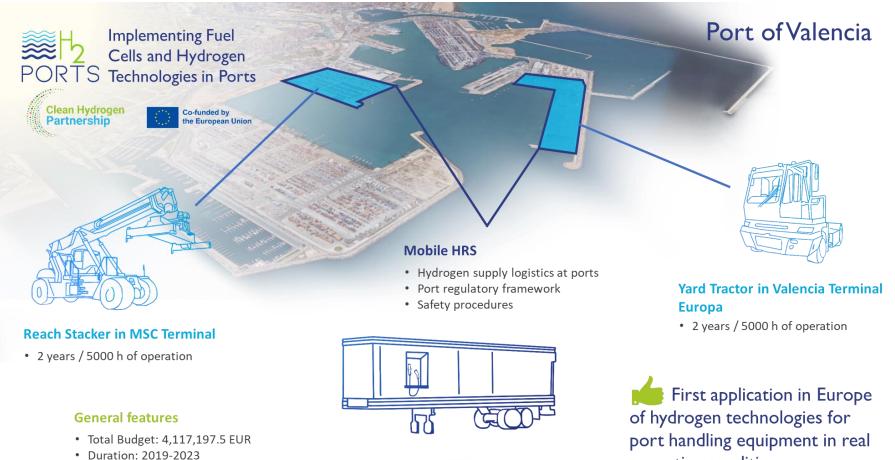
In figures

77.5 M tonnes. Total Traffic¹

5.6 M TEU Container Traffic¹

412 k ITU RoRo Traffic¹

31,563² direct or indirect jobs


1.82² billion euros in economic impact (GVA)

- ¹ Values from 2021
- ² Values from 2016

Project Objectives

Partners

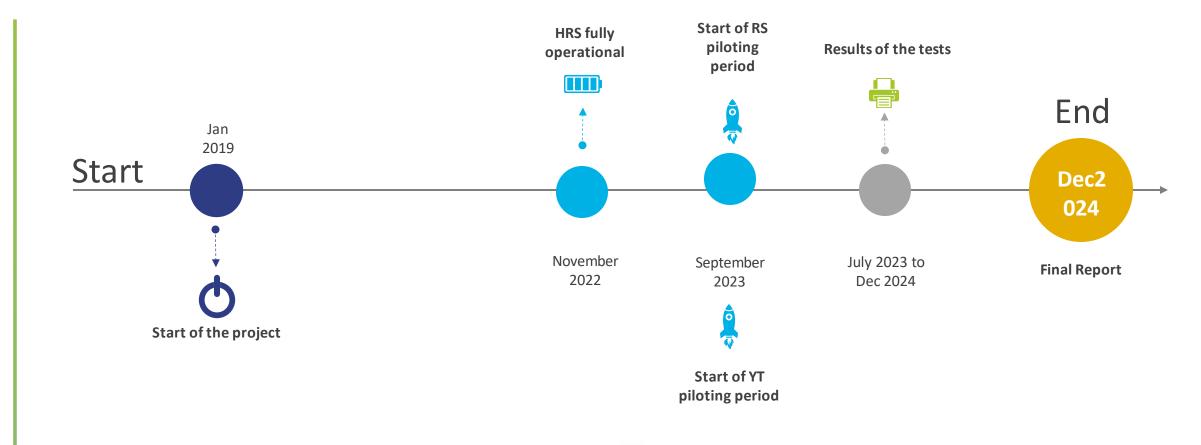
Coordination:

Public authorities

Research institutions

End users

Industry



H2Ports current planning

Co-funded by the European Union

Clean Hydrogen Partnership

//EU HYDROGEN RESEARCH DAYS

Hydrogen Supply

15-16 NOVEMBE

Gas Supplier

Buffer Tank 50 m³; D:2450 L:11510 10-40 bar 180kg

50m3/h p_{in} :10-40 bar p_{out} : 300-450 bar

Panel dispenser Up to 3.6 kg/min Tmax 85 °C

450bar 33 x 135 L 4450 L 138 kg

300 bar 44 x 153 L 6732 L

151 kg

Clean Hydrogen **Partnership**

FCHJU funding € 800,000 approx.

National Hydrogen Centre, Carburos Metálicos, Fundación Valenciaport, Valencia Port Authority, MSCTV, Hyster-Yale, Grimaldi, ATENA, Enagás

- Mobile hydrogen refuelling station
- Up to 60 kg of H₂ at 350 bar per day
- Hydrogen flow rate up to 3.6 kg/min
- Storage cascade at 300 and 450 bar use in order to save energy

Hydrogen Supply

Hydrogen Supply

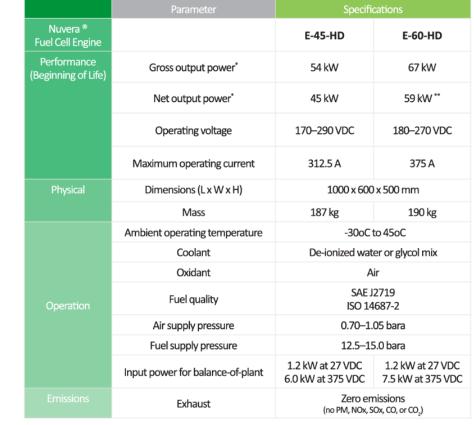
Reach Stacker - MSC Terminal

FCHJU funding € 1,300,000 approx.

Hyster-Yale Nederland B.V., MSCTV, Port Authority of Valencia, Fundación Valenciaport, National Hydrogen Centre

Expected achievements

- Average CO₂ reduction of 128,000 kg per year per vehicle (3000 h & 16 L/h)
- Lower TCO
- Improved productivity

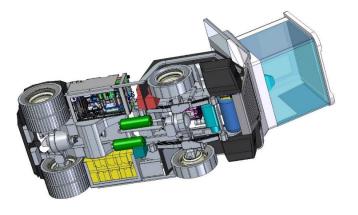


Reach Stacker - MSC Terminal

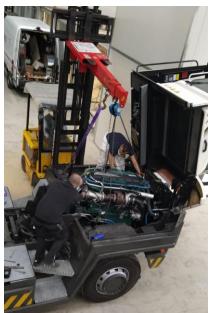
Specifications

M-4-

Reach Stacker - MSC Terminal






Terminal Tractor

FCHJU funding € 1,100,000 approx.

ATENA, Grimaldi Group, Ballard, National Hydrogen Centre, Fundacion Valenciaport

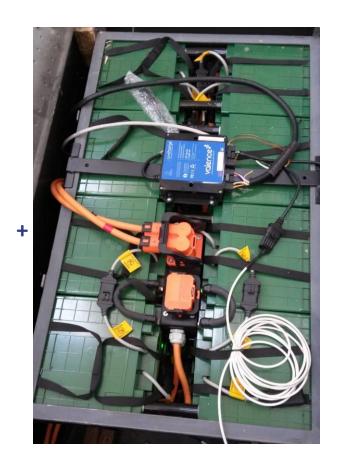
Development and deployment a 4x4 Yard Tractor equipped with a Fuel Cells and test it in Valencia Terminal Europa (Grimaldi Group). It involves three tasks:

- Design of the new FCEV YT
- Assembling of new components in the YT
- Testing and Piloting of the FCEV YT in Valencia, Spain

Terminal Tractor

Fuel Cell

Ballard FCmove-HD 70	
Company producing	Ballard Power Systems Inc
Fuel cell module	Ballard FCmove-HD 70
Net system power	70 kW
Operating system current	20-250 A
Operating system voltage	250-500 VA
Idle power	8 kW
Dimensions (I x w x h) including air filter	1783 x 815 x 415 mm
Weight	250 kg



Terminal Tractor

Battery Pack:

The battery pack is Lithion Battery P40-24 higher power performance, it is composed by 24 modules connected in series configuration, each module having nominal capacity and voltage of 40 Ah and 25.6V, and the battery pack allows for a nominal energy capacity of 24.6 kWh.



I/EU HYDROGEN RESEARCH DAYS 15-16 NOVEMBER

Terminal Tractor

Risk management and Market strategy

Objectives

Analysis of the technical and financial feasibility of the use Hydrogen Fuel Cells in ports machinery.

Logistics

Define the most adequate logistic chain for supplying hydrogen. Estimate potential agregated demand

Regulatory

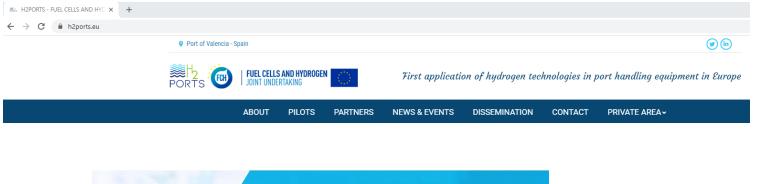
Analyse all aspects related to safety. Study the permiting process

Market uptake

Assess the financial feasibility. Propose a path for the introduction of FC in the port maritime sector. Define the most probable implementing scenarios.

Dissemination Activities

- The H2PORTS's Stakeholder Group has been set up, with 79 members.
- During this period 3 Newsletters have been launched with a total of 1.480 downloads from our website.
- 18 PRESS RELEASES have been written and sent to the national and international media.
- Awarded as best innovation project at GREENGAS conference.
- H2PORTS project has already been presented in nearly 50 Conferences, Webinars and Technical Meetings.



Follow us

https://h2ports.eu/

FUEL CELLS AND HYDROGEN
JOINT UNDERTAKING

Linked in

Communications Activities

