

SH2E Sustainability Assessment of Harmonised Hydrogen Energy Systems:

Guidelines for Life Cycle Sustainability Assessment and Prospective Benchmarking

Javier Dufour

IMDEA Energy

https://sh2e.eu/ javier.dufour@imdea.org SHZE

- Call year: 2020
- Call topic: FCH-04-5-2020 Guidelines for Life Cycle Sustainability Assessment (LCSA) of fuel cell and hydrogen systems
- Project dates: 1st Jan 2021 30th Jun 2024
- % stage of implementation 01/11/2023: 85 %
- Total project budget: 2,142,778.75 €
- Clean Hydrogen Partnership max. contribution: 1,997,616.25 €
- Other financial contribution: 145,162.50 €
- Partners: GD, FZJ, CEA, FHa, SYMBIO France, IAE, IME

Project Summary

 To provide a well-defined, validated and practical framework for LCSA of FCH systems.

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

- To facilitate robust decision-making processes in the field of FCH by adding sustainability criteria to the characterisation and benchmarking of FCH systems.
- Development and application of specific guidelines for the environmental, economic and social life cycle assessment of FCH systems, and their consistent integration into a sound LCSA framework.

https://www.youtube.com/watch?v=UWgCjLK9QHI

FCH-LCSA guidelines

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

- I document of FCH-LCA guidelines
- 1 material criticality indicator
- I document of FCH-LCC guidelines
- I document of FCH-SLCA guidelines
- I document of <u>FCH-LCSA guidelines</u>

	Achievement to-dat	e 0 tools				1 tool
			25%	50 %	75 %	
•	1 integrated FCH- LCA/LCC/SLCA/LCSA software tool	CH-LCA tool	– – ×	EG FCH-LCA tool Select a template Please select a matching template	plate and a top-category under which t	- C ×
		End-of-life Please select the choice of end-of-life modelling O Cut-off approach Recycling approach Circular footprint formula O Other approach, please state:	approach	Category Select a template: Cradle-to-gate 1 (hydrogen production) (kg of H ₂)		
		< <u>B</u> ack	c <u>N</u> ext > <u>Finish</u> Cancel		< <u>B</u> ack <u>N</u> ext	> <u>F</u> inish Cancel
		Clean Hydrogen Partnership	European Hydrogen Week	Co-funded the Europe	l by ean Union	

Achievement to-date 0 case studies

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

- 2 FCH systems being assessed and benchmarked from a life-cycle sustainability perspective:
 - <u>Hydrogen production</u> through solid oxide electrolysis coupled with a concentrated solar power plant
 - Hydrogen use in a protonexchange membrane fuel cell electric car

https://doi.org/10.1016/j.renene.2022.07.066

Co-funded by the European Union

25%

Achievement to-date

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

- 0 case studies
- 2 FCH systems being assessed and benchmarked from a life-cycle sustainability perspective:
 - Hydrogen production through solid oxide electrolysis coupled with a concentrated solar power plant
 - Hydrogen use in a protonexchange membrane fuel cell electric car

■ CSP ■ Electrolysis ■ Compression ■ Indirect Cost ■ Supplementary cost ■ Wages and Salaries ■ Insurance

50%

75%

2 case studies

Achievement to-date 0 case studies

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

- 2 FCH systems being assessed and benchmarked from a life-cycle sustainability perspective:
 - Hydrogen production through solid oxide electrolysis coupled with a concentrated solar power plant
 - <u>Hydrogen use</u> in a protonexchange membrane fuel cell electric car

Achievement to-date 0 case

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

0 case studies

- 2 FCH systems being assessed and benchmarked from a life-cycle sustainability perspective:
 - Hydrogen production through solid oxide electrolysis coupled with a concentrated solar power plant
 - <u>Hydrogen use</u> in a protonexchange membrane fuel cell electric car

Hydrogen Production, Coniditioning & Dispensing
Maintenance (for car lifespan)
 End of Life

European Hydrogen Week

Use of FCEV

2 case studies

RESEARCH DAYS 15-16 NOVEMBER

- No deviations
- Challenges:
 - Widespread use \rightarrow upcoming dissemination events (EHEC2024, URJC Summer School, etc.)
- Next steps:
 - Final version of the guidelines
 - Final version of the tool
 - Final version of the case studies
 - Third-party review

Exploitation Plan/Expected Impact

Exploitation

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

- RCS strategy for LCSA of FCH systems

 Guidelines
 - o **Tool**
- Exploitation plan (June 2024)

Impact

- Robust framework for a transparent, harmonised and up-to-date LCSA of FCH systems as well as for a fair comparison between competing technical solutions
- Robust decision-making processes

