

Hydrogen Underground Storage in Porous Reservoirs

Remco Groenenberg, Lead Scientist, TNO¹

¹Netherlands Organization for Applied Scientific Research

Website: <u>www.hyuspre.eu</u> Coordinator: <u>holger.cremer@tno.nl</u> Lead scientist: <u>remco.groenenberg@tno.nl</u>

IEU HYDROGEN RESEARCH DAYS 15-16 NOVEMBER

Project Overview

- Call year: 2020
- Call topic: Underground storage of renewable hydrogen in depleted gas fields and other geological stores - FCH-02-5-2020
- Call type: Research and Innovation Action (RIA)
- Project dates: 1 October 2022 30 June 2024
- % stage of implementation 01/11/2023: 75%
- Total project budget: € 3 714 850,-
- Clean Hydrogen Partnership max. contribution: € 2,499,850,-
- Other financial contribution: € 1,215,000,-

the European Union

Project Summary

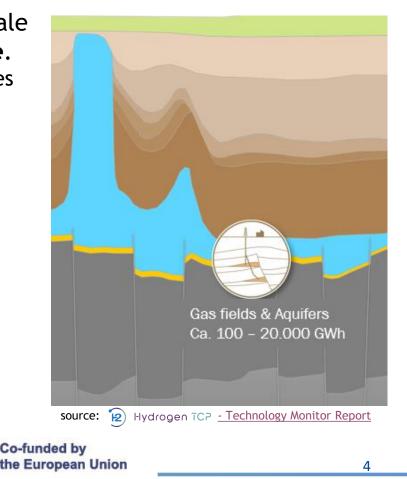
https://www.ieahydrogen.org/download/17/taskreports/7067/task42_uhs_technologymonitoringreport.pdf

Objectives

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER


- Assessing the technical feasibility, risks, and potential of large-scale underground hydrogen storage (UHS) in porous reservoirs in Europe.
 - Geochemical, geomechanical, microbiological, flow and transport processes
 - Accurate cost estimates and identifying the business cases
 - Suitable stores and quantifying their storage potential
- Developing a roadmap for deployment of UHS up to 2050
 - Mapping the proximity of potential storage reservoirs to RE infrastructure
 - Evaluating amounts of RE to be buffered versus time-varying demands
 - Developing future scenarios and roadmap for Europe-wide implementation

Expected Impact

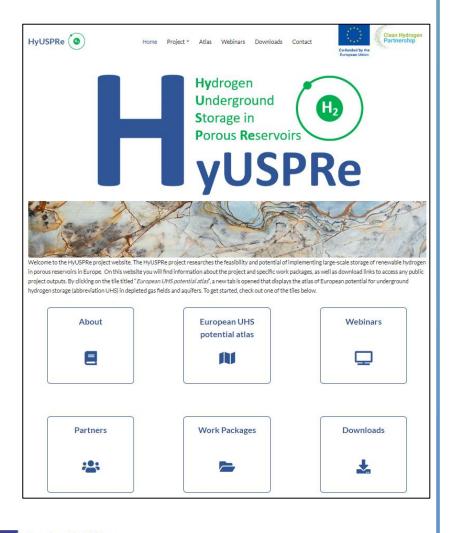
 Show that UHS has potential, and potential risks can be responsibly managed, by raising TRL from 3 to 5, making it ready for piloting

Highlights of Project Status

52 deliverables promised, of which 31 achieved until now

3 external webinars organized, 2 more in 11-2023 and Q1-2024

4 e-Newsletters published


//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

3 consortium meetings held, final conference planned for May '24

All (public) deliverables published on HyUSPRe website

//EU HYDROGEN RESEARCH DAYS 15-16 NOVEMBER

Highlights of Project Progress

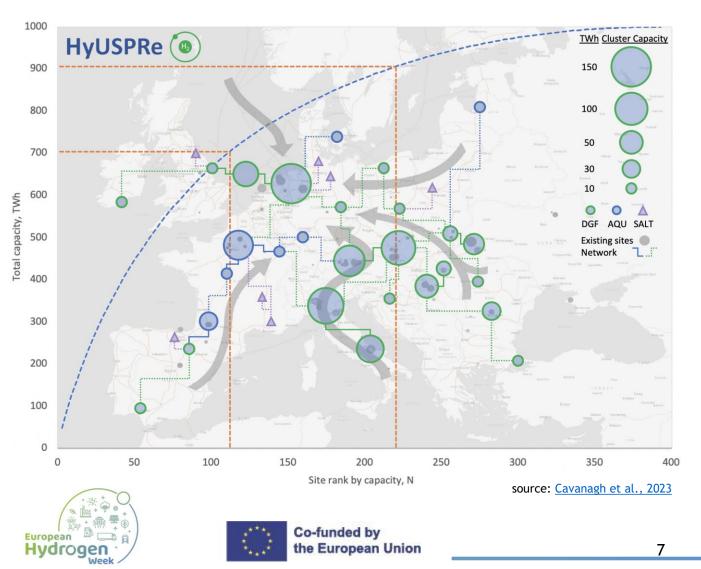
Quantified hydrogen storage potential of existing UGS sites in porous reservoirs in Europe, mapped their proximity to areas of supply and demand and infrastructure, and developed a vision on roll-out of hydrogen storage infrastructure to meet projected future demand for storage.

Experimental studies of geochemical and microbiological reactions with hydrogen under geological storage conditions that improved our understanding of their relevance for derisking hydrogen storage in reservoirs.

Integrated modelling approach for the overall performance, integrity and durability assessment at the reservoir and near-wellbore scale, and applied models enhanced in HyUSPRe in case studies of representative partner sites.

European H₂ storage potential

Renewable H₂ production potential (10's of PWh) far exceeds projected future demand (1-5 PWh)


//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

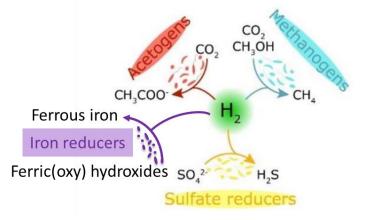
- H₂ storage potential in existing gas storages (reservoirs) in Europe when converted ≈ 300-450 TWh
- Large potential in gasfields and aquifers in identified storage clusters to develop additional capacity to meet storage needs.
- Published in <u>HyUSPRe atlas</u> of European H₂ storage potential (in porous reservoirs)

Clean Hydrogen Partnership

Geo- and Biochemical Reactions with H₂

- Published <u>literature review</u> of window of viability of different microbial metabolisms relevant for H₂ storage
 - T and salinity are the most constraining factors

//EU HYDROGEN


RESEARCH DAYS

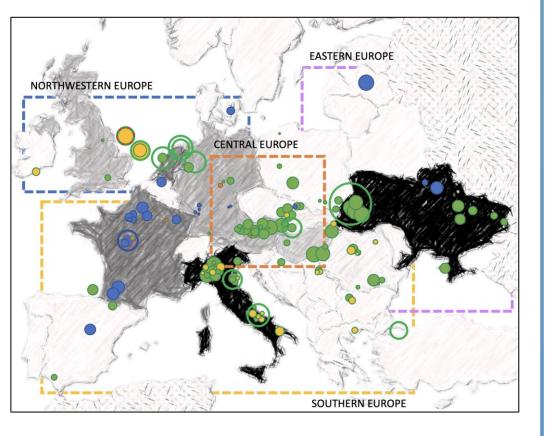
15-16 NOVEMBER

- Experiments performed on samples of partner sites
 - Redefine known window of viability for sulfate reducers to combination of at least > 65°C, and >2 M NaCl
- Assessed risk of H₂S generation from reaction with pyrite
 - Pressure, temperature, pH, grain size influence reactivity
 - H₂S produced at 120°C and higher, no H₂S measured at 40°C, 80°C (yet) inconclusiVe
- Published database of mineral reaction rates with H₂

Co-funded by the European Union

//EU HYDROGEN RESEARCH DAYS 15-16 NOVEMBER

Modeling, Case Studies and Guidelines


- **Developed an integrated modelling approach** for the overall performance, integrity and durability assessment at the reservoir and near-wellbore scale
- Implemented and tested open-source reservoir simulator DuMu^x code enhancements for bio-reactive transport modeling
- **Applying** (and benchmarking) of DuMu^x and selected other simulators in case studies of 3 partner sites.
- Formulating a set of guidelines for the decision making process & assessing reservoir and site suitability.

Risks, Challenges and Lessons Learned

- Complexity of experimental work in laboratories easily underestimated:
 - For example, unforeseen complications with equipment and methods for HP/HT reaction experiments involving hydrogen and H_2S at high pH leading to delays
 - Mitigated by applying protective coatings, and using multiple (complementary) detection methods
 - Acknowledge that experimental work relies (also) on learning-by-doing and progressive insight
- Be aware of risk of delay due to dependencies between work streams:
 - For example, delay in provisioning of experimental data to be used as input for modeling
 - Mitigated by implementing batch-wise provisioning and using (placeholder) data (literature)
- Delay in hiring of (academic) staff by universities:

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

- Common practice to start hiring process after project start, takes time, leads to early delays
- It really helps to have a project book with rules, guidelines, practical info etc.

Exploitation Plan/Expected Impact

Exploitation

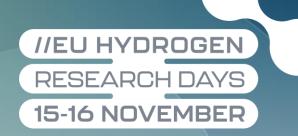
//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

- Online HyUSPRe atlas (and database) visualizing potential storage sites and their performance metrics to be exploited in site screening studies.
- New experimental data on reactions of hydrogen with rocks, fluids, and microbes in reservoirs and flow behaviour of hydrogen under operational storage conditions to be exploited for improved site-specific modeling
- New algorithms, models and software code for simulating flow, geochemical and microbiological processes in reservoirs to be exploited for derisking.

Clean Hydrogen Partnership



Impact

- Show that underground hydrogen storage has potential, and that potential risks can be responsibly managed, by raising the TRL from 3 to 5.
- Prepare the deployment of pilots and demonstrations in Europe.
- Develop a H₂ vision and roadmap towards realizing full-scale underground hydrogen storage in reservoirs in Europe in 2050.
- Various scientific papers in open access journals

11

Thank You for Listening!

Website: <u>www.hyuspre.eu</u> Coordinator: <u>holger.cremer@tno.nl</u> Lead scientist: <u>remco.groenenberg@tno.nl</u>

