THyGA Testing Hydrogen admixture for Gas Applications

Patrick Milin

ENGIE

https://thyga-project.eu

patrick.milin@engie.com

- Call year: 2019
- Call topic: FCH-04-3-2019 Hydrogen admixtures in natural gas domestic and commercial end uses
- Project dates: January 2020 March 2023
- % stage of implementation 01/11/2023: 100%
- Total project budget: 4M€
- Clean Hydrogen Partnership max. contribution: 2.5M€
- Other financial contribution: /

Partners: BDR Thermea, CEA, DGC, DVGW-EBI, ELECTROLUX, ENGIE, Gas.be, GERG, GWI

Project Summary

Context: Hydrogen, along with green electricity from wind and solar power, provides a pathway to decarbonise the European energy systems. Hydrogen blending in the gas grid would reduce the carbon footprint of gas utilisation, contributing to an overall reduction of greenhouse gas emissions.

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

Hydrogen injection in the gas grid

New challenge for enduse equipment...

...in particular for higher % of H₂ in blends

>200 million residential and commercial gas appliances in Europe!

Objectives and expected results

CLOSE KNOWLEDGE GAPS

related to technical impacts on residential and commercial gas appliances.

SUPPORT STANDARDIZATION

ACTIVITIES

to answer the needs for new appliance operation, test gases, etc.

HYDROGEN PERCENTAGE

CLARIFY THE ACCEPTABLE

that would not compromise safety and performance.

Image: Construction of the construc

~50 manufacturers involved

The analysis covers

- Safety (synthesis on the right)
- But also: efficiency, emissions, comfort....

Overall Impact of H2 on								
	SEGMENT	Efficiency	NOX	CO	CH4			
100a	Boiler premix	+	-	-				
100b	Boiler NOT premix	0	-	-				
200	Water heater	0	-	-				
300	Cooker dom	0	- (*)	-				
400a	Catering premix	NM	-	-				
400b	Catering NOT premix	unclear	-	-				
500	Space heaters	0	-	unclear				
600	CHP	0	unclear	unclear				
700	GHP	0	-	-				
800	Radiant heater & commercial air heaters	-	unclear	-				

0-**10** 20-23 23-30 30-**40** 40-**50** 50-**60** 0 10-**20** simple nitigation to be defined Safetv 4 10 100a Boilers fully Safety with mitigation Dedicated adjustment methodology 1 premix Operational Safety 2 100b Boilers Not premix Operationa Safety 1 200 Water heaters Operational 300 Cookers domestic Safety 2 10 Operational simple Safety nitigation to be defined (2) itigation (1 400a Catering Safety with mitigation Dedicated adjustment methodology equipment - Premix Operationa 1 1 Safety 400b Catering quipment - Not premix Operational Safety 500 Space Heaters Operational lame asne 600 Combined Heat and Safety Power (CHP) Onerationa Safety 700 Gas Heat Pumps (GHP) Operationa Safet 800 Radiant heater & commercial air heaters Operationa

NOT INCLUDING DELAYED IGNITION POTENTIAL ISSUES OR OTHER POSSIBLE NOT IDENTIFIED ISSUES

H2 % Tested

(*) can suddenly increase for H2 >40%

I/EU HYDROGEN RESEARCH DAYS 15-16 NOVEMBER

Project Progress/Actions

Support standardization activities

Achievement to-date

Current standardization framework

Studying test gases for H2NG in link with notified bodies and CEN Technical committees' initiatives

Natural gas (2 nd family – group H)	H ₂ NG (with 20% H ₂)	Comment
G21 (87% CH ₄ + 13% C ₃ H ₈)	G21	as H ₂ concentration may vary between 0 and 20%)
G23 (92,5% CH ₄ + 7,5% N ₂)	G23 or Gxx	H_2 lowers WI, but flame speed increase compensates \Rightarrow to be calculated
G222 (77% CH ₄ + 23% H ₂)	G22 (65% CH ₄ + 35% H ₂)	only for partial premixed burners + fully premixed burners equipped with combustion control
	Gyy (G21 and/or G24 proposed)	for fully premixed burners
G24 (68% CH ₄ + 12% C ₃ H ₈ + 20% H ₂)	G24 ?	overload + increased flame speed
	$\begin{array}{c} \mbox{Natural gas} \\ \mbox{(2^{nd} family - group H)} \\ \mbox{G21} \\ \mbox{(87\% CH}_4 + 13\% C_3H_8) \\ \mbox{G23} \\ \mbox{(92,5\% CH}_4 + 7,5\% N_2) \\ \mbox{G222} \\ \mbox{(77\% CH}_4 + 23\% H_2) \\ \mbox{G224} \\ \mbox{(68\% CH}_4 + 12\% C_3H_8 + 20\% H_2) \\ \mbox{G24} \\ \mbox{(68\% CH}_4 + 12\% C_3H_8 + 20\% H_2) \\ \mbox{G24} \\ \mbox{(68\% CH}_4 + 12\% C_3H_8 + 20\% H_2) \\ \mbox{G24} \\ \mbox{(68\% CH}_4 + 12\% C_3H_8 + 20\% H_2) \\ \mbox{G24} \\ \mbox{(68\% CH}_4 + 12\% C_3H_8 + 20\% H_2) \\ \mbox{G24} \\ \mbox{(68\% CH}_4 + 12\% C_3H_8 + 20\% H_2) \\ \mbox{G24} \\ \mbox{(68\% CH}_4 + 12\% C_3H_8 + 20\% H_2) \\ \mbox{G24} \\ \mbox{(68\% CH}_4 + 12\% C_3H_8 + 20\% H_2) \\ \mbox{G24} \\ \mbox{(68\% CH}_4 + 12\% C_3H_8 + 20\% H_2) \\ \mbox{G24} \\ \mbox{(68\% CH}_4 + 12\% C_3H_8 + 20\% H_2) \\ \mbox{G24} \\ \mbox{(68\% CH}_4 + 12\% C_3H_8 + 20\% H_2) \\ \mbox{G24} \\ \mbox{(68\% CH}_4 + 20\% C_3H_8 + 20\% H_2) \\ \mbox{G24} \\ \mbox{(68\% CH}_4 + 20\% C_3H_8 + 20\% C_3H_8 + 20\% C_3H_8 + 20\% C_3H_8 \\ \mbox{(68\% CH}_4 + 20\% C_3H_8 + 20\% C_3H_8 + 20\% C_3H_8 \\ \mbox{(78\% CH}_4 + 20\% C_3H_8 + 20\% C_3H_8 + 20\% C_3H_8 \\ \mbox{(78\% CH}_4 + 20\% C_3H_8 + 20\% C_3H_8 \\ \mbox{(78\% CH}_4 + 20\% C_3H_8 + 20\% C_3H_8 \\ \mbox{(78\% CH}_4 + 20\% C_3H_8 + 20\% C_3H_8 \\ \mbox{(78\% CH}_4 \\ (7$	$\begin{array}{c} \begin{array}{c} \mbox{Natural gas} \\ \mbox{(2^{nd} family - group H)} \\ \mbox{group H)} \\ \end{array} \\ \begin{array}{c} \mbox{H}_2 NG \\ (with 20\% H_2 NG H_2 NG H_2 H_2 NG H_2 H_2 NG H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2$

Identification of risks linked to table of Gas Appliance Regulation essential requirements and the findings of WP3 testing for 20% H_2NG

100% Description

and

identification

of issues

H ₂ property	Risk	Cause	Comments + evaluation for 20% H ₂ NG
	Higher NO_x emissions	Thermal NO_x formation	Impact may be (partially) compensated by air excess increase 20% H ₂ NG: NOx emissions decreasing apart from some exceptions
Higher flame temperature	Material/product deterioration	Material does not resist the higher temperature	Impact increased by the higher flame speed, but (partially) compensated by air excess increase 20% H ₂ NG: no issues detected, but case by case evaluation required
nyurogen /	1. A & A & A & A & A & A & A & A & A & A	the European Union	
Week /			

//EU HYDROGEN RESEARCH DAYS 15-16 NOVEMBER

Project Progress/Actions

Recommendation for large scale implementation

Achievement to-date

Unknown on existing stock

Working on standardization for new appliances must be coupled with work on existing stock

3 topics should be adressed by all stakeholders: delayed ignition on some appliances, liability and adjustment ! Many leads provided in THyGA reports

7

of H2NG

blends on the

stock

Risks, Challenges and Lessons Learned Helping standardization bodies on PNR activities requires a lot of flexibility

CEN TCs starting to work on ${}^{\rm "}{\rm H}_2$ ready" certification, some going faster than others

//EU HYDROGEN

RESEARCH DAYS

15-16 NOVEMBER

"H₂ ready" concept discussed in regulation for Energyrelated Products (ErP): Ecodesign & Labelling

Manufacturers $\rm H_2$ roadmaps pushed by the "Primemovers" initiative

DSO / TSO clearer about possible $\rm H_2\%$ in the gas grid (up to 20 %)

Consequences for the project

READJUSTING THyGA testing to give the best value to the industry (focus on 0 to $30\% H_2$)

ADAPTATION of the content and objective of the WP4 to best suit the needs of the stakeholders

RESULTS ALREADY KNOWN by some actors beforehand BUT TOTALLY NEW FOR OTHERS = finding the good balance

//EU HYDROGEN RESEARCH DAYS 15-16 NOVEMBER

Exploitation Plan/Expected Impact

Exploitation

80% of the deliverables are public + ~12 workshops Presence in ~30 conferences and 2 technical papers Wide advisory panel group to ensure maximized exploitation of the project's results

Impacts

Impact 1: Establishing what %H2 can be implemented in domestic and commercial sector

Impact 2: Establishing how the existing certification shall be modified to allow higher concentrations

Impact 3: Recommendations for revision of EN or ISO standards or drafting of new standards based on PNR results and a review of the existing testing methods

Impact 4: Improved knowledge on the effect of H2NG on common burner types including necessary adjustments and design changes.

IS-16 NOVEMBER

10

VISIT THE THyGA WEBSITE

All public presentations and deliverables of the project will be available on the project website

흊 thyga-project.eu

Clean Hydrogen

Partnership

For regular updates, you can also follow the GERG <u>LinkedIn</u> page and <u>website</u>

CONTACT EMAIL

Do not hesitate to contact us by email at <u>contact thyga@engie.com</u>

Co-funded by

the European Union

Thank you

